These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 39342621)

  • 1. Protocol for the efficient and inducible generation of CRISPR-Cas9-edited human cortical neurons from the iCas9-iNgn2 hPSCs.
    Dhaliwal NK; Weng OY; Li Y
    STAR Protoc; 2024 Dec; 5(4):103352. PubMed ID: 39342621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reproducible Differentiation of Human Pluripotent Stem Cells into Two-Dimensional Cortical Neuron Cultures with Checkpoints for Success.
    Waxman EA; Dungan LV; DeFlitch LM; Merchant JP; Gagne AL; Goldberg EM; French DL
    Curr Protoc; 2023 Dec; 3(12):e948. PubMed ID: 38148714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-optimized sgRNA selection with PlatinumCRISPr for efficient Cas9 generation of knockouts.
    Haussmann IU; Dix TC; McQuarrie DWJ; Dezi V; Hans AI; Arnold R; Soller M
    Genome Res; 2024 Dec; 34(12):2279-2292. PubMed ID: 39626969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome editing of porcine zygotes via lipofection of two guide RNAs using a CRISPR/Cas9 system.
    Lin Q; Takebayashi K; Torigoe N; Liu B; Namula Z; Hirata M; Tanihara F; Nagahara M; Otoi T
    J Reprod Dev; 2024 Dec; 70(6):356-361. PubMed ID: 39218670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protocol for iterative enrichment of integrated sgRNAs via derivative CRISPR-Cas9 libraries from genomic DNA of sorted fixed cells.
    Ordóñez A; Ron D; Harding HP
    STAR Protoc; 2024 Dec; 5(4):103493. PubMed ID: 39661507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of CRISPR-Cas9 Transgenic Cell Lines for Knocksideways Studies.
    Wagenbach M; Vicente JJ; Wagenbach W; Wordeman L
    Curr Protoc; 2023 Dec; 3(12):e965. PubMed ID: 38153181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiplex Genome Editing of Human Pluripotent Stem Cells Using Cpf1.
    Ma H
    Bio Protoc; 2024 Nov; 14(22):e5108. PubMed ID: 39600977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR/Cas9 Ribonucleoprotein Nucleofection for Genome Editing in Primary Human Keratinocytes: Knockouts, Deletions, and Homology-Directed Repair Mutagenesis.
    Bamundo M; Palumbo S; D'Auria L; Missero C; Di Girolamo D
    Curr Protoc; 2024 Nov; 4(11):e70056. PubMed ID: 39601181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protocol for the derivation and culture of murine trophoblast organoids for CRISPR-Cas9 screening.
    Mao Q; Jiang J; Ye Q; Wang H; Lin CP
    STAR Protoc; 2024 Dec; 5(4):103405. PubMed ID: 39427312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protocol for establishing CRISPR-Cas12a for efficient genome editing of Pseudomonas aeruginosa phages.
    Yan B; Liu Y; Cai Y; Liu Y; Chen Y
    STAR Protoc; 2024 Dec; 5(4):103488. PubMed ID: 39666461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR-Cas9-based approaches for genetic analysis and epistatic interaction studies in
    Steiner S; Roy CR
    mSphere; 2024 Dec; 9(12):e0052324. PubMed ID: 39560384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An innovative CRISPR/Cas9 mouse model of human isolated microtia indicates the potential contribution of CNVs near HMX1 gene.
    Xing W; Zhang J; Liu T; Wang Y; Qian J; Wang B; Zhang Y; Zhang Q
    Int J Pediatr Otorhinolaryngol; 2024 Dec; 187():112141. PubMed ID: 39616960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved gene editing and fluorescent-protein tagging in
    Modaffari D; Finlayson A; Miao Y; Wallace EWJ; Sawin KE
    Wellcome Open Res; 2024; 9():602. PubMed ID: 39640368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPRi/a Screening with Human iPSCs.
    Nishiga M; Qi LS; Wu JC
    Methods Mol Biol; 2021; 2320():261-281. PubMed ID: 34302664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptation of bacterial natural single guide RNA (tracr-L) for efficient plant genome editing.
    Karmakar S; Panda D; Behera D; Saha R; Baig MJ; Molla KA
    Plant Cell Rep; 2024 Nov; 43(12):291. PubMed ID: 39579214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-aware annotation of CRISPR guides validates targets in variant cell lines and enhances discovery in screens.
    Lam S; Thomas JC; Jackson SP
    Genome Med; 2024 Nov; 16(1):139. PubMed ID: 39593080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced CRISPR-Cas9 RNA system delivery using cell penetrating peptides-based nanoparticles for efficient in vitro and in vivo applications.
    Guzman Gonzalez V; Grunenberger A; Nicoud O; Czuba E; Vollaire J; Josserand V; Le Guével X; Desai N; Coll JL; Divita G; Faure V
    J Control Release; 2024 Dec; 376():1160-1175. PubMed ID: 39521064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A biodegradable lipid nanoparticle delivers a Cas9 ribonucleoprotein for efficient and safe in situ genome editing in melanoma.
    Yang X; Zhou S; Zeng J; Zhang S; Li M; Yue F; Chen Z; Dong Y; Zeng Y; Luo J
    Acta Biomater; 2024 Dec; 190():531-547. PubMed ID: 39461690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic dissection of pre-crRNA binding and processing by CRISPR-Cas12a.
    Sinan S; Appleby NM; Chou CW; Finkelstein IJ; Russell R
    RNA; 2024 Sep; 30(10):1345-1355. PubMed ID: 39009379
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.