These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 39343018)

  • 1. Presence of vitamin B
    Dorrell RG; Nef C; Altan-Ochir S; Bowler C; Smith AG
    Philos Trans R Soc Lond B Biol Sci; 2024 Nov; 379(1914):20230354. PubMed ID: 39343018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into the evolution of vitamin B12 auxotrophy from sequenced algal genomes.
    Helliwell KE; Wheeler GL; Leptos KC; Goldstein RE; Smith AG
    Mol Biol Evol; 2011 Oct; 28(10):2921-33. PubMed ID: 21551270
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Kipkorir T; Mashabela GT; de Wet TJ; Koch A; Dawes SS; Wiesner L; Mizrahi V; Warner DF
    J Bacteriol; 2021 Mar; 203(7):. PubMed ID: 33468593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chlamydomonas reinhardtii thermal tolerance enhancement mediated by a mutualistic interaction with vitamin B12-producing bacteria.
    Xie B; Bishop S; Stessman D; Wright D; Spalding MH; Halverson LJ
    ISME J; 2013 Aug; 7(8):1544-55. PubMed ID: 23486253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Algae acquire vitamin B12 through a symbiotic relationship with bacteria.
    Croft MT; Lawrence AD; Raux-Deery E; Warren MJ; Smith AG
    Nature; 2005 Nov; 438(7064):90-3. PubMed ID: 16267554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unraveling vitamin B12-responsive gene regulation in algae.
    Helliwell KE; Scaife MA; Sasso S; Araujo AP; Purton S; Smith AG
    Plant Physiol; 2014 May; 165(1):388-97. PubMed ID: 24627342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of vitamin B12 dependency in Saccharomyces cerevisiae.
    Lehner S; Boles E
    FEMS Yeast Res; 2023 Jan; 23():. PubMed ID: 36941127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutualistic interactions between vitamin B12 -dependent algae and heterotrophic bacteria exhibit regulation.
    Kazamia E; Czesnick H; Nguyen TT; Croft MT; Sherwood E; Sasso S; Hodson SJ; Warren MJ; Smith AG
    Environ Microbiol; 2012 Jun; 14(6):1466-76. PubMed ID: 22463064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic adaptation of Ralstonia solanacearum during plant infection: a methionine biosynthesis case study.
    Plener L; Boistard P; González A; Boucher C; Genin S
    PLoS One; 2012; 7(5):e36877. PubMed ID: 22615832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Major transitions in the evolution of early land plants: a bryological perspective.
    Ligrone R; Duckett JG; Renzaglia KS
    Ann Bot; 2012 Apr; 109(5):851-71. PubMed ID: 22356739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and characterization of a bacterial core methionine synthase.
    Deobald D; Hanna R; Shahryari S; Layer G; Adrian L
    Sci Rep; 2020 Feb; 10(1):2100. PubMed ID: 32034217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of the MetR regulatory system in vitamin B12-mediated repression of the Salmonella typhimurium metE gene.
    Wu WF; Urbanowski ML; Stauffer GV
    J Bacteriol; 1992 Jul; 174(14):4833-7. PubMed ID: 1385596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fundamental shift in vitamin B12 eco-physiology of a model alga demonstrated by experimental evolution.
    Helliwell KE; Collins S; Kazamia E; Purton S; Wheeler GL; Smith AG
    ISME J; 2015 Jun; 9(6):1446-55. PubMed ID: 25526368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial phylogenomics of early land plants: mitigating the effects of saturation, compositional heterogeneity, and codon-usage bias.
    Liu Y; Cox CJ; Wang W; Goffinet B
    Syst Biol; 2014 Nov; 63(6):862-78. PubMed ID: 25070972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The hornworts: morphology, evolution and development.
    Frangedakis E; Shimamura M; Villarreal JC; Li FW; Tomaselli M; Waller M; Sakakibara K; Renzaglia KS; Szövényi P
    New Phytol; 2021 Jan; 229(2):735-754. PubMed ID: 32790880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cobalamin-independent Methionine Synthase Distribution and Influence on Vitamin B12 Growth Requirements in Marine Diatoms.
    Ellis KA; Cohen NR; Moreno C; Marchetti A
    Protist; 2017 Feb; 168(1):32-47. PubMed ID: 27951467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of Human B12 Trafficking Protein CblD Reveals Molecular Mimicry and Identifies a New Subfamily of Nitro-FMN Reductases.
    Yamada K; Gherasim C; Banerjee R; Koutmos M
    J Biol Chem; 2015 Dec; 290(49):29155-66. PubMed ID: 26364851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of the metF and metJ genes on the vitamin B12 regulation of methionine gene expression: involvement of N5-methyltetrahydrofolic acid.
    Cai XY; Jakubowski H; Redfield B; Zaleski B; Brot N; Weissbach H
    Biochem Biophys Res Commun; 1992 Jan; 182(2):651-8. PubMed ID: 1734876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vitamin B
    Lin S; Hu Z; Song X; Gobler CJ; Tang YZ
    Fundam Res; 2022 Sep; 2(5):727-737. PubMed ID: 38933134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vitamin-B12-independent methionine synthase from a higher plant (Catharanthus roseus). Molecular characterization, regulation, heterologous expression, and enzyme properties.
    Eichel J; González JC; Hotze M; Matthews RG; Schröder J
    Eur J Biochem; 1995 Jun; 230(3):1053-8. PubMed ID: 7601135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.