These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 39343894)
1. Enzyme-armed nanocleaner provides superior detoxification against organophosphorus compounds via a dual-action mechanism. Qin K; Meng F; Han D; Guo W; Li X; Li Z; Du L; Zhou H; Yan H; Peng Y; Gao Z J Nanobiotechnology; 2024 Sep; 22(1):593. PubMed ID: 39343894 [TBL] [Abstract][Full Text] [Related]
2. Dual-Modal Nanoscavenger for Detoxification of Organophosphorus Compounds. Zou S; Wang B; Wang Q; Liu G; Song J; Zhang F; Li J; Wang F; He Q; Zhu Y; Zhang L ACS Appl Mater Interfaces; 2022 Sep; 14(37):42454-42467. PubMed ID: 36089739 [TBL] [Abstract][Full Text] [Related]
4. Organophosphorus hydrolase-poly-β-cyclodextrin as a stable self-decontaminating bio-catalytic material for sorption and degradation of organophosphate pesticide. Moon Y; Jafry AT; Bang Kang S; Young Seo J; Baek KY; Kim EJ; Pan JG; Choi JY; Kim HJ; Han Lee K; Jeong K; Bae SW; Shin S; Lee J; Lee Y J Hazard Mater; 2019 Mar; 365():261-269. PubMed ID: 30447633 [TBL] [Abstract][Full Text] [Related]
5. A simple and highly effective catalytic nanozyme scavenger for organophosphorus neurotoxins. Efremenko EN; Lyagin IV; Klyachko NL; Bronich T; Zavyalova NV; Jiang Y; Kabanov AV J Control Release; 2017 Feb; 247():175-181. PubMed ID: 28043864 [TBL] [Abstract][Full Text] [Related]
6. Detoxification of Organophosphate Poisoning Using Nanoparticle Bioscavengers. Pang Z; Hu CM; Fang RH; Luk BT; Gao W; Wang F; Chuluun E; Angsantikul P; Thamphiwatana S; Lu W; Jiang X; Zhang L ACS Nano; 2015 Jun; 9(6):6450-8. PubMed ID: 26053868 [TBL] [Abstract][Full Text] [Related]
7. Combined effect of organophosphorus hydrolase and oxime on the reactivation rate of diethylphosphoryl-acetylcholinesterase conjugates. Ashani Y; Leader H; Rothschild N; Dosoretz C Biochem Pharmacol; 1998 Jan; 55(2):159-68. PubMed ID: 9448738 [TBL] [Abstract][Full Text] [Related]
8. Effect of organophosphorus hydrolysing enzymes on obidoxime-induced reactivation of organophosphate-inhibited human acetylcholinesterase. Herkenhoff S; Szinicz L; Rastogi VK; Cheng TC; DeFrank JJ; Worek F Arch Toxicol; 2004 Jun; 78(6):338-43. PubMed ID: 14985944 [TBL] [Abstract][Full Text] [Related]
9. Testing of antidotes for organophosphorus compounds: experimental procedures and clinical reality. Eyer P; Szinicz L; Thiermann H; Worek F; Zilker T Toxicology; 2007 Apr; 233(1-3):108-19. PubMed ID: 17010492 [TBL] [Abstract][Full Text] [Related]
10. In silico and in vitro evaluation of two novel oximes (K378 and K727) in comparison to K-27 and pralidoxime against paraoxon-ethyl intoxication. Arshad M; Fatmi MQ; Musilek K; Hussain A; Kuca K; Petroianu G; Kalasz H; Nurulain SM Toxicol Mech Methods; 2018 Jan; 28(1):62-68. PubMed ID: 28722512 [TBL] [Abstract][Full Text] [Related]
11. Slow-binding reversible inhibitor of acetylcholinesterase with long-lasting action for prophylaxis of organophosphate poisoning. Lenina OA; Zueva IV; Zobov VV; Semenov VE; Masson P; Petrov KA Sci Rep; 2020 Oct; 10(1):16611. PubMed ID: 33024231 [TBL] [Abstract][Full Text] [Related]
12. Two possible orientations of the HI-6 molecule in the reactivation of organophosphate-inhibited acetylcholinesterase. Luo C; Leader H; Radic Z; Maxwell DM; Taylor P; Doctor BP; Saxena A Biochem Pharmacol; 2003 Aug; 66(3):387-92. PubMed ID: 12907237 [TBL] [Abstract][Full Text] [Related]
13. Differences in biological activities between recombinant human paraoxonase 1 (rhPON1) subtype isozemys R/Q as antidotes against organophosphorus poisonings. Cui Y; Zhao M; Han L Toxicol Lett; 2020 Jun; 325():51-61. PubMed ID: 31981688 [TBL] [Abstract][Full Text] [Related]
14. Effective countermeasure against poisoning by organophosphorus insecticides and nerve agents. Albuquerque EX; Pereira EF; Aracava Y; Fawcett WP; Oliveira M; Randall WR; Hamilton TA; Kan RK; Romano JA; Adler M Proc Natl Acad Sci U S A; 2006 Aug; 103(35):13220-5. PubMed ID: 16914529 [TBL] [Abstract][Full Text] [Related]
15. Degradation of organophosphorus neurotoxicity in SY5Y neuroblastoma cells by organophosphorus hydrolase (OPH). Cho TM; Wild JR; Donnelly KC; Tiffany-Castiglioni E J Toxicol Environ Health A; 2006 Aug; 69(15):1413-29. PubMed ID: 16766477 [TBL] [Abstract][Full Text] [Related]
16. Plant-derived human acetylcholinesterase-R provides protection from lethal organophosphate poisoning and its chronic aftermath. Evron T; Geyer BC; Cherni I; Muralidharan M; Kilbourne J; Fletcher SP; Soreq H; Mor TS FASEB J; 2007 Sep; 21(11):2961-9. PubMed ID: 17475919 [TBL] [Abstract][Full Text] [Related]
17. Comparison of the reactivation rates of acetylcholinesterase modified by structurally different organophosphates using novel pyridinium oximes. Bharate SB; Chao CK; Thompson CM Environ Toxicol Pharmacol; 2019 Oct; 71():103218. PubMed ID: 31302432 [TBL] [Abstract][Full Text] [Related]
18. Interactions between acetylcholinesterase, toxic organophosphorus compounds and a short series of structurally related non-oxime reactivators: Analysis of reactivation and inhibition kinetics in vitro. Horn G; de Koning MC; van Grol M; Thiermann H; Worek F Toxicol Lett; 2018 Dec; 299():218-225. PubMed ID: 30312685 [TBL] [Abstract][Full Text] [Related]
19. Cholinesterase reactivators and bioscavengers for pre- and post-exposure treatments of organophosphorus poisoning. Masson P; Nachon F J Neurochem; 2017 Aug; 142 Suppl 2():26-40. PubMed ID: 28542985 [TBL] [Abstract][Full Text] [Related]
20. Interactive toxicity of the organophosphorus insecticides chlorpyrifos and methyl parathion in adult rats. Karanth S; Liu J; Olivier K; Pope C Toxicol Appl Pharmacol; 2004 Apr; 196(2):183-90. PubMed ID: 15081265 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]