These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 3934390)

  • 41. Exogenous fructose-1,6-bisphosphate is a metabolizable substrate for the isolated normoxic rat heart.
    Tavazzi B; Starnes JW; Lazzarino G; Di Pierro D; Nuutinen EM; Giardina B
    Basic Res Cardiol; 1992; 87(3):280-9. PubMed ID: 1520250
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Zonation of gluconeogenesis from lactate and pyruvate in the rat liver studied by means of anterograde and retrograde bivascular perfusion.
    Bracht A; Constantin J; Ishii-Iwamoto EL; Suzuki-Kemmelmeier F
    Biochim Biophys Acta; 1994 Apr; 1199(3):298-304. PubMed ID: 8161569
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Substrate and inhibitor specificities of the monocarboxylate transporters of single rat heart cells.
    Wang X; Levi AJ; Halestrap AP
    Am J Physiol; 1996 Feb; 270(2 Pt 2):H476-84. PubMed ID: 8779821
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The kinetics, substrate and inhibitor specificity of the lactate transporter of Ehrlich-Lettre tumour cells studied with the intracellular pH indicator BCECF.
    Carpenter L; Halestrap AP
    Biochem J; 1994 Dec; 304 ( Pt 3)(Pt 3):751-60. PubMed ID: 7818477
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of dichloroacetate on the metabolism of glucose, pyruvate, acetate, 3-hydroxybutyrate and palmitate in rat diaphragm and heart muscle in vitro and on extraction of glucose, lactate, pyruvate and free fatty acids by dog heart in vivo.
    McAllister A; Allison SP; Randle PJ
    Biochem J; 1973 Aug; 134(4):1067-81. PubMed ID: 4762752
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Trans-stimulation of lactate transport from rat sarcolemmal membrane vesicles.
    Brown MA; Brooks GA
    Arch Biochem Biophys; 1994 Aug; 313(1):22-8. PubMed ID: 8053682
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Rapid transcapillary exchange and unidirectional neuronal uptake of noradrenaline in the perfused rabbit heart.
    Mann GE; Yudilevich DL
    J Physiol; 1984 Mar; 348():589-600. PubMed ID: 6425496
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Transport of D-lactate in perfused rat liver.
    Schwab AJ; Bracht A; Scholz R
    Eur J Biochem; 1979 Dec; 102(2):537-47. PubMed ID: 527592
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of D-3-hydroxybutyrate and acetoacetate on lactate removal in isolated perfused livers from starved and fed rats.
    Metcalfe HK; Monson JP; deAllie F; Cohen RD
    Metabolism; 1992 Apr; 41(4):435-40. PubMed ID: 1556952
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Characterization of the high-affinity monocarboxylate transporter MCT2 in Xenopus laevis oocytes.
    Bröer S; Bröer A; Schneider HP; Stegen C; Halestrap AP; Deitmer JW
    Biochem J; 1999 Aug; 341 ( Pt 3)(Pt 3):529-35. PubMed ID: 10417314
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Pyruvate and lactate metabolism in the in vivo dog heart.
    Laughlin MR; Taylor J; Chesnick AS; DeGroot M; Balaban RS
    Am J Physiol; 1993 Jun; 264(6 Pt 2):H2068-79. PubMed ID: 8322935
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Kinetics of the sarcolemmal lactate carrier in single heart cells using BCECF to measure pHi.
    Wang X; Levi AJ; Halestrap AP
    Am J Physiol; 1994 Nov; 267(5 Pt 2):H1759-69. PubMed ID: 7977806
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Lactate transport by cardiac sarcolemmal vesicles.
    Trosper TL; Philipson KD
    Am J Physiol; 1987 May; 252(5 Pt 1):C483-9. PubMed ID: 3578501
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Characterization of sodium and pyruvate interactions of the two carrier systems specific of mono- and di- or tricarboxylic acids by renal brush-border membrane vesicles.
    Mengual R; Claude-Schlageter MH; Poiree JC; Yagello M; Sudaka P
    J Membr Biol; 1989 Jun; 108(3):197-205. PubMed ID: 2778796
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Determination of buffering capacity of rat myocardium during ischemia.
    Wolfe CL; Gilbert HF; Brindle KM; Radda GK
    Biochim Biophys Acta; 1988 Aug; 971(1):9-20. PubMed ID: 2841984
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Reabsorption of monocarboxylic acids in the proximal tubule of the rat kidney. I. Transport kinetics of D-lactate, Na+-dependence, pH-dependence and effect of inhibitors.
    Ullrich KJ; Rumrich G; Klöss S
    Pflugers Arch; 1982 Nov; 395(3):212-9. PubMed ID: 7155794
    [No Abstract]   [Full Text] [Related]  

  • 57. Transport of lactic acid in Kluyveromyces marxianus: evidence for a monocarboxylate uniport.
    Fonseca A; Spencer-Martins I; van Uden N
    Yeast; 1991 Nov; 7(8):775-80. PubMed ID: 1789000
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Regulation of ATP sensitive potassium channel of isolated guinea pig ventricular myocytes by sarcolemmal monocarboxylate transport.
    Coetzee WA
    Cardiovasc Res; 1992 Nov; 26(11):1077-86. PubMed ID: 1291085
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Characterization of carnitine transport in isolated perfused adult rat hearts.
    Vary TC; Neely JR
    Am J Physiol; 1982 Apr; 242(4):H585-92. PubMed ID: 7065273
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hepatic lactate uptake is enhanced by low pH at low lactate concentrations in perfused rat liver.
    Sestoft L; Marshall MO
    Clin Sci (Lond); 1986 Jan; 70(1):19-22. PubMed ID: 3080270
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.