These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 39344262)
21. Intermolecular Interactions, Solute Descriptors, and Partition Properties of Neutral Per- and Polyfluoroalkyl Substances (PFAS). Endo S Environ Sci Technol; 2023 Nov; 57(45):17534-17541. PubMed ID: 37909300 [TBL] [Abstract][Full Text] [Related]
22. Volatility and Nonspecific van der Waals Interaction Properties of Per- and Polyfluoroalkyl Substances (PFAS): Evaluation Using Hexadecane/Air Partition Coefficients. Hammer J; Endo S Environ Sci Technol; 2022 Nov; 56(22):15737-15745. PubMed ID: 36240042 [TBL] [Abstract][Full Text] [Related]
23. Dow and Kaw,eff vs. Kow and Kaw degrees: acid/base ionization effects on partitioning properties and screening commercial chemicals for long-range transport and bioaccumulation potential. Rayne S; Forest K J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010 Oct; 45(12):1550-94. PubMed ID: 20721799 [TBL] [Abstract][Full Text] [Related]
24. Development and evaluation of two-parameter linear free energy models for the prediction of human skin permeability coefficient of neutral organic chemicals. Naseem S; Zushi Y; Nabi D J Cheminform; 2021 Mar; 13(1):25. PubMed ID: 33741067 [TBL] [Abstract][Full Text] [Related]
25. A comparison of molecular representations for lipophilicity quantitative structure-property relationships with results from the SAMPL6 logP Prediction Challenge. Lui R; Guan D; Matthews S J Comput Aided Mol Des; 2020 May; 34(5):523-534. PubMed ID: 31933037 [TBL] [Abstract][Full Text] [Related]
26. Quantitative structure-property relationships for predicting metal binding by organic ligands. Cabaniss SE Environ Sci Technol; 2008 Jul; 42(14):5210-6. PubMed ID: 18754371 [TBL] [Abstract][Full Text] [Related]
27. Characterization of sorption properties of high-density polyethylene using the poly-parameter linearfree-energy relationships. Uber TH; Hüffer T; Planitz S; Schmidt TC Environ Pollut; 2019 May; 248():312-319. PubMed ID: 30802745 [TBL] [Abstract][Full Text] [Related]
28. QSAR models for predicting octanol/water and organic carbon/water partition coefficients of polychlorinated biphenyls. Yu S; Gao S; Gan Y; Zhang Y; Ruan X; Wang Y; Yang L; Shi J SAR QSAR Environ Res; 2016 Apr; 27(4):249-63. PubMed ID: 26998720 [TBL] [Abstract][Full Text] [Related]
29. Illustrating sensitivity and uncertainty in environmental fate models using partitioning maps. Meyer T; Wania F; Breivik K Environ Sci Technol; 2005 May; 39(9):3186-96. PubMed ID: 15926569 [TBL] [Abstract][Full Text] [Related]
30. Screening-level models to estimate partition ratios of organic chemicals between polymeric materials, air and water. Reppas-Chrysovitsinos E; Sobek A; MacLeod M Environ Sci Process Impacts; 2016 Jun; 18(6):667-76. PubMed ID: 27158699 [TBL] [Abstract][Full Text] [Related]
31. Predicting bioconcentration factors (BCFs) for per- and polyfluoroalkyl substances (PFAS). Kowalska D; Sosnowska A; Zdybel S; Stepnik M; Puzyn T Chemosphere; 2024 Sep; 364():143146. PubMed ID: 39181470 [TBL] [Abstract][Full Text] [Related]
32. In Silico Prediction of Physicochemical Properties of Environmental Chemicals Using Molecular Fingerprints and Machine Learning. Zang Q; Mansouri K; Williams AJ; Judson RS; Allen DG; Casey WM; Kleinstreuer NC J Chem Inf Model; 2017 Jan; 57(1):36-49. PubMed ID: 28006899 [TBL] [Abstract][Full Text] [Related]
33. Application of an Iterative Fragment Selection (IFS) Method to Estimate Entropies of Fusion and Melting Points of Organic Chemicals. Brown TN; Armitage JM; Arnot JA Mol Inform; 2019 Aug; 38(8-9):e1800160. PubMed ID: 30816634 [TBL] [Abstract][Full Text] [Related]
34. Assessing the accuracy of octanol-water partition coefficient predictions in the SAMPL6 Part II log P Challenge. Işık M; Bergazin TD; Fox T; Rizzi A; Chodera JD; Mobley DL J Comput Aided Mol Des; 2020 Apr; 34(4):335-370. PubMed ID: 32107702 [TBL] [Abstract][Full Text] [Related]
35. A new concept for the environmental risk assessment of poorly water soluble compounds and its application to consumer products. Tolls J; Müller M; Willing A; Steber J Integr Environ Assess Manag; 2009 Jul; 5(3):374-8. PubMed ID: 20050026 [TBL] [Abstract][Full Text] [Related]
36. Environmental risk assessment of selected organic chemicals based on TOC test and QSAR estimation models. Chi Y; Zhang H; Huang Q; Lin Y; Ye G; Zhu H; Dong S J Environ Sci (China); 2018 Feb; 64():23-31. PubMed ID: 29478644 [TBL] [Abstract][Full Text] [Related]
37. Hydrophobic Sorption Properties of an Extended Series of Anionic Per- and Polyfluoroalkyl Substances Characterized by C Endo S; Matsuzawa S Environ Sci Technol; 2024 Apr; 58(17):7628-7635. PubMed ID: 38646668 [TBL] [Abstract][Full Text] [Related]
38. Understanding quantitative structure-property relationships uncertainty in environmental fate modeling. Sarfraz Iqbal M; Golsteijn L; Öberg T; Sahlin U; Papa E; Kovarich S; Huijbregts MA Environ Toxicol Chem; 2013 Apr; 32(5):1069-76. PubMed ID: 23436749 [TBL] [Abstract][Full Text] [Related]
39. Modeling the transplacental transfer of small molecules using machine learning: a case study on per- and polyfluorinated substances (PFAS). Abrahamsson D; Siddharth A; Robinson JF; Soshilov A; Elmore S; Cogliano V; Ng C; Khan E; Ashton R; Chiu WA; Fung J; Zeise L; Woodruff TJ J Expo Sci Environ Epidemiol; 2022 Nov; 32(6):808-819. PubMed ID: 36207486 [TBL] [Abstract][Full Text] [Related]
40. Experimental determination of polyparameter linear free energy relationship (pp-LFER) substance descriptors for pesticides and other contaminants: new measurements and recommendations. Stenzel A; Goss KU; Endo S Environ Sci Technol; 2013 Dec; 47(24):14204-14. PubMed ID: 24245575 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]