These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 39344783)

  • 21. Electroosmotic Flow of Viscoelastic Fluid in a Nanoslit.
    Mei L; Zhang H; Meng H; Qian S
    Micromachines (Basel); 2018 Mar; 9(4):. PubMed ID: 30424089
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electroosmotic transport of immiscible binary system with a layer of non-conducting fluid under interfacial slip: The role applied pressure gradient.
    Gaikwad H; Basu DN; Mondal PK
    Electrophoresis; 2016 Jul; 37(14):1998-2009. PubMed ID: 27079927
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Redefining electrical double layer thickness in narrow confinements: effect of solvent polarization.
    Das S; Chakraborty S; Mitra SK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051508. PubMed ID: 23004768
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Generalized model for time periodic electroosmotic flows with overlapping electrical double layers.
    Chakraborty S; Srivastava AK
    Langmuir; 2007 Nov; 23(24):12421-8. PubMed ID: 17949121
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mathematical modelling of pressure-driven micropolar biological flow due to metachronal wave propulsion of beating cilia.
    Akbar NS; Tripathi D; Khan ZH; Bég OA
    Math Biosci; 2018 Jul; 301():121-128. PubMed ID: 29630907
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Energy transfer through streaming effects in time-periodic pressure-driven nanochannel flows with interfacial slip.
    Goswami P; Chakraborty S
    Langmuir; 2010 Jan; 26(1):581-90. PubMed ID: 19894749
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Flow behavior of periodical electroosmosis in microchannel for biochips.
    Wang X; Wu J
    J Colloid Interface Sci; 2006 Jan; 293(2):483-8. PubMed ID: 16061240
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Numerical analysis of water based CNTs flow of micropolar fluid through rotating frame.
    Nadeem S; Abbas N; Elmasry Y; Malik MY
    Comput Methods Programs Biomed; 2020 Apr; 186():105194. PubMed ID: 31751872
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Oscillating laminar electrokinetic flow in infinitely extended circular microchannels.
    Bhattacharyya A; Masliyah JH; Yang J
    J Colloid Interface Sci; 2003 May; 261(1):12-20. PubMed ID: 12725819
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unsteady Heat and Mass Transfer of Chemically Reacting Micropolar Fluid in a Porous Channel with Hall and Ion Slip Currents.
    Ojjela O; Naresh Kumar N
    Int Sch Res Notices; 2014; 2014():646957. PubMed ID: 27419211
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Softness Induced Enhancement in Net Throughput of Non-Linear Bio-Fluids in Nanofluidic Channel under EDL Phenomenon.
    Gaikwad HS; Mondal PK; Wongwises S
    Sci Rep; 2018 May; 8(1):7893. PubMed ID: 29777120
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Streaming potential of superhydrophobic microchannels.
    Park HM; Kim D; Kim SY
    Electrophoresis; 2017 Mar; 38(5):689-701. PubMed ID: 27935097
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Slip length of water on graphene: limitations of non-equilibrium molecular dynamics simulations.
    Kannam SK; Todd BD; Hansen JS; Daivis PJ
    J Chem Phys; 2012 Jan; 136(2):024705. PubMed ID: 22260608
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Amplification of electro-osmotic flows by wall slippage: direct measurements on OTS-surfaces.
    Audry MC; Piednoir A; Joseph P; Charlaix E
    Faraday Discuss; 2010; 146():113-24; discussion 195-215, 395-403. PubMed ID: 21043417
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Extension of the Helmholtz-Smoluchowski velocity to the hydrophobic microchannels with velocity slip.
    Park HM; Kim TW
    Lab Chip; 2009 Jan; 9(2):291-6. PubMed ID: 19107287
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Numerical Investigation of Diffusioosmotic Flow in a Tapered Nanochannel.
    Chanda S; Tsai PA
    Membranes (Basel); 2022 Apr; 12(5):. PubMed ID: 35629807
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Numerical Simulation of the Influence of Non-Uniform
    Han Y; Zhao W
    Micromachines (Basel); 2024 Mar; 15(3):. PubMed ID: 38542666
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simultaneous estimation of zeta potential and slip coefficient in hydrophobic microchannels.
    Park HM; Kim TW
    Anal Chim Acta; 2007 Jun; 593(2):171-7. PubMed ID: 17543604
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analytical solution of time periodic electroosmotic flows: analogies to Stokes' second problem.
    Duttat P; Beskok A
    Anal Chem; 2001 Nov; 73(21):5097-102. PubMed ID: 11721905
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Polar Fluid Model for Blood Flow through a Tapered Artery with Overlapping Stenosis: Effects of Catheter and Velocity Slip.
    Reddy JV; Srikanth D
    Appl Bionics Biomech; 2015; 2015():174387. PubMed ID: 27018180
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.