These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 39345382)

  • 1. A Strategic Blend of Stabilizing Polymers to Control Particle Surface Charge for Enhanced Mucus Transport and Cell Binding.
    Stevens CA; Sevarika B; Wilson BK; Wang CM; Cárcamo-Oyarce G; Degen G; Kassis T; Lehr CM; Carrier R; Ribbeck K; Prud'homme RK
    bioRxiv; 2024 Sep; ():. PubMed ID: 39345382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of Surface Polyethylene Glycol (PEG) Density on Biodegradable Nanoparticle Transport in Mucus ex Vivo and Distribution in Vivo.
    Xu Q; Ensign LM; Boylan NJ; Schön A; Gong X; Yang JC; Lamb NW; Cai S; Yu T; Freire E; Hanes J
    ACS Nano; 2015 Sep; 9(9):9217-27. PubMed ID: 26301576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomimetic Viruslike and Charge Reversible Nanoparticles to Sequentially Overcome Mucus and Epithelial Barriers for Oral Insulin Delivery.
    Wu J; Zheng Y; Liu M; Shan W; Zhang Z; Huang Y
    ACS Appl Mater Interfaces; 2018 Mar; 10(12):9916-9928. PubMed ID: 29504398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the synthesis of mucus permeating nanocarriers.
    Bourganis V; Karamanidou T; Samaridou E; Karidi K; Kammona O; Kiparissides C
    Eur J Pharm Biopharm; 2015 Nov; 97(Pt A):239-49. PubMed ID: 25661586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preferential tumor accumulation and desirable interstitial penetration of poly(lactic-co-glycolic acid) nanoparticles with dual coating of chitosan oligosaccharide and polyethylene glycol-poly(D,L-lactic acid).
    Wang G; Chen Y; Wang P; Wang Y; Hong H; Li Y; Qian J; Yuan Y; Yu B; Liu C
    Acta Biomater; 2016 Jan; 29():248-260. PubMed ID: 26476340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anti-PEG antibodies alter the mobility and biodistribution of densely PEGylated nanoparticles in mucus.
    Henry CE; Wang YY; Yang Q; Hoang T; Chattopadhyay S; Hoen T; Ensign LM; Nunn KL; Schroeder H; McCallen J; Moench T; Cone R; Roffler SR; Lai SK
    Acta Biomater; 2016 Oct; 43():61-70. PubMed ID: 27424083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions of microbicide nanoparticles with a simulated vaginal fluid.
    das Neves J; Rocha CM; Gonçalves MP; Carrier RL; Amiji M; Bahia MF; Sarmento B
    Mol Pharm; 2012 Nov; 9(11):3347-56. PubMed ID: 23003680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polydopamine Coating Enhances Mucopenetration and Cell Uptake of Nanoparticles.
    Poinard B; Kamaluddin S; Tan AQQ; Neoh KG; Kah JCY
    ACS Appl Mater Interfaces; 2019 Feb; 11(5):4777-4789. PubMed ID: 30694045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface Exposure of PEG and Amines on Biodegradable Nanoparticles as a Strategy to Tune Their Interaction with Protein-Rich Biological Media.
    Conte C; Dal Poggetto G; J Swartzwelter B; Esposito D; Ungaro F; Laurienzo P; Boraschi D; Quaglia F
    Nanomaterials (Basel); 2019 Sep; 9(10):. PubMed ID: 31547212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoparticle diffusion within intestinal mucus: Three-dimensional response analysis dissecting the impact of particle surface charge, size and heterogeneity across polyelectrolyte, pegylated and viral particles.
    Abdulkarim M; Agulló N; Cattoz B; Griffiths P; Bernkop-Schnürch A; Borros SG; Gumbleton M
    Eur J Pharm Biopharm; 2015 Nov; 97(Pt A):230-8. PubMed ID: 25661585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering Polymer-Binding Bispecific Antibodies for Enhanced Pretargeted Delivery of Nanoparticles to Mucus-Covered Epithelium.
    Huckaby JT; Parker CL; Jacobs TM; Schaefer A; Wadsworth D; Nguyen A; Wang A; Newby J; Lai SK
    Angew Chem Int Ed Engl; 2019 Apr; 58(17):5604-5608. PubMed ID: 30811861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural contributions of blocked or grafted poly(2-dimethylaminoethyl methacrylate) on PEGylated polycaprolactone nanoparticles in siRNA delivery.
    Lin D; Huang Y; Jiang Q; Zhang W; Yue X; Guo S; Xiao P; Du Q; Xing J; Deng L; Liang Z; Dong A
    Biomaterials; 2011 Nov; 32(33):8730-42. PubMed ID: 21885115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradable polymer nanoparticles that rapidly penetrate the human mucus barrier.
    Tang BC; Dawson M; Lai SK; Wang YY; Suk JS; Yang M; Zeitlin P; Boyle MP; Fu J; Hanes J
    Proc Natl Acad Sci U S A; 2009 Nov; 106(46):19268-73. PubMed ID: 19901335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of rhodamine loaded PEG-g-PLA nanoparticles (NPs): effect of poly(ethylene glycol) grafting density.
    Essa S; Rabanel JM; Hildgen P
    Int J Pharm; 2011 Jun; 411(1-2):178-87. PubMed ID: 21458551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradable nanoparticles meet the bronchial airway barrier: how surface properties affect their interaction with mucus and epithelial cells.
    Mura S; Hillaireau H; Nicolas J; Kerdine-Römer S; Le Droumaguet B; Deloménie C; Nicolas V; Pallardy M; Tsapis N; Fattal E
    Biomacromolecules; 2011 Nov; 12(11):4136-43. PubMed ID: 21981120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reversibly shielded DNA polyplexes based on bioreducible PDMAEMA-SS-PEG-SS-PDMAEMA triblock copolymers mediate markedly enhanced nonviral gene transfection.
    Zhu C; Zheng M; Meng F; Mickler FM; Ruthardt N; Zhu X; Zhong Z
    Biomacromolecules; 2012 Mar; 13(3):769-78. PubMed ID: 22277017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mucus-penetrating nanoparticles based on chitosan grafted with various non-ionic polymers: Synthesis, structural characterisation and diffusion studies.
    Ways TMM; Filippov SK; Maji S; Glassner M; Cegłowski M; Hoogenboom R; King S; Lau WM; Khutoryanskiy VV
    J Colloid Interface Sci; 2022 Nov; 626():251-264. PubMed ID: 35797869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mucus adhesion vs. mucus penetration? Screening nanomaterials for nasal inhalation by MD simulation.
    Gao X; Xiong Y; Chen H; Gao X; Dai J; Zhang Y; Zou W; Gao Y; Jiang Z; Han B
    J Control Release; 2023 Jan; 353():366-379. PubMed ID: 36462640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoparticle penetration of human cervicovaginal mucus: the effect of polyvinyl alcohol.
    Yang M; Lai SK; Yu T; Wang YY; Happe C; Zhong W; Zhang M; Anonuevo A; Fridley C; Hung A; Fu J; Hanes J
    J Control Release; 2014 Oct; 192():202-8. PubMed ID: 25090196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of surface chemistry of polymeric nanoparticles on cutaneous penetration of cholecalciferol.
    Lalloz A; Bolzinger MA; Faivre J; Latreille PL; Garcia Ac A; Rakotovao C; Rabanel JM; Hildgen P; Banquy X; Briançon S
    Int J Pharm; 2018 Dec; 553(1-2):120-131. PubMed ID: 30316003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.