These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 39345764)
1. Electron diffraction and solid-state NMR reveal the structure and exciton coupling in a eumelanin precursor. Vinod K; Mathew R; Jandl C; Thomas B; Hariharan M Chem Sci; 2024 Sep; 15(39):16015-24. PubMed ID: 39345764 [TBL] [Abstract][Full Text] [Related]
2. Structural Investigation of DHICA Eumelanin Using Density Functional Theory and Classical Molecular Dynamics Simulations. Soltani S; Sowlati-Hashjin S; Tetsassi Feugmo CG; Karttunen M Molecules; 2022 Dec; 27(23):. PubMed ID: 36500509 [TBL] [Abstract][Full Text] [Related]
3. Free Energy and Stacking of Eumelanin Nanoaggregates. Soltani S; Sowlati-Hashjin S; Tetsassi Feugmo CG; Karttunen M J Phys Chem B; 2022 Mar; 126(8):1805-1818. PubMed ID: 35175060 [TBL] [Abstract][Full Text] [Related]
4. Exciton interactions in helical crystals of a hydrogen-bonded eumelanin monomer. Sasikumar D; Vinod K; Sunny J; Hariharan M Chem Sci; 2022 Feb; 13(8):2331-2338. PubMed ID: 35310511 [TBL] [Abstract][Full Text] [Related]
5. Sequential Proton-Coupled Electron Transfer Mediates Excited-State Deactivation of a Eumelanin Building Block. Nogueira JJ; Corani A; El Nahhas A; Pezzella A; d'Ischia M; González L; Sundström V J Phys Chem Lett; 2017 Mar; 8(5):1004-1008. PubMed ID: 28195487 [TBL] [Abstract][Full Text] [Related]
6. Eumelanin Precursor 2-Carboxy-5,6-Dihydroxyindole (DHICA) as Doping Factor in Ternary (PEDOT:PSS/Eumelanin) Thin Films for Conductivity Enhancement. Migliaccio L; Gesuele F; Manini P; Maglione MG; Tassini P; Pezzella A Materials (Basel); 2020 May; 13(9):. PubMed ID: 32370189 [TBL] [Abstract][Full Text] [Related]
7. Charge transfer in DHICA eumelanin-like oligomers: role of hydrogen bonds. Choudhury A; Ghosh D Chem Commun (Camb); 2020 Sep; 56(72):10481-10484. PubMed ID: 32766667 [TBL] [Abstract][Full Text] [Related]
8. On the antioxidant activity of eumelanin biopigments: a quantitative comparison between free radical scavenging and redox properties. Cecchi T; Pezzella A; Di Mauro E; Cestola S; Ginsburg D; Luzi M; Rigucci A; Santato C Nat Prod Res; 2020 Sep; 34(17):2465-2473. PubMed ID: 30600712 [TBL] [Abstract][Full Text] [Related]
9. Hydration effects on the electronic properties of eumelanin building blocks. Assis Oliveira LB; L Fonseca T; Costa Cabral BJ; Coutinho K; Canuto S J Chem Phys; 2016 Aug; 145(8):084501. PubMed ID: 27586929 [TBL] [Abstract][Full Text] [Related]
10. Composition of mammalian eumelanins: analyses of DHICA-derived units in pigments from hair and melanoma cells. Wilczek A; Kondoh H; Mishima Y Pigment Cell Res; 1996 Apr; 9(2):63-7. PubMed ID: 8857667 [TBL] [Abstract][Full Text] [Related]
11. Regulation of DHICA-mediated antioxidation by dopachrome tautomerase: implication for skin photoprotection against UVA radiation. Jiang S; Liu XM; Dai X; Zhou Q; Lei TC; Beermann F; Wakamatsu K; Xu SZ Free Radic Biol Med; 2010 May; 48(9):1144-51. PubMed ID: 20123016 [TBL] [Abstract][Full Text] [Related]
12. 5,6-Dihydroxyindole eumelanin content in human skin with varying degrees of constitutive pigmentation. Del Bino S; Ito S; Sok J; Wakamatsu K Pigment Cell Melanoma Res; 2022 Nov; 35(6):622-626. PubMed ID: 35933709 [TBL] [Abstract][Full Text] [Related]
13. A Model Eumelanin from 5,6-Dihydroxyindole-2-Carboxybutanamide Combining Remarkable Antioxidant and Photoprotective Properties with a Favourable Solubility Profile for Dermo-Cosmetic Applications. Argenziano R; Alfieri ML; Gallucci N; D'Errico G; Panzella L; Napolitano A Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36835650 [TBL] [Abstract][Full Text] [Related]
14. Self-assembly of 5,6-dihydroxyindole-2-carboxylic acid: polymorphism of a eumelanin building block on Au(111). De Marchi F; Galeotti G; Simenas M; Ji P; Chi L; Tornau EE; Pezzella A; MacLeod J; Ebrahimi M; Rosei F Nanoscale; 2019 Mar; 11(12):5422-5428. PubMed ID: 30855042 [TBL] [Abstract][Full Text] [Related]
15. Effects of the melanin precursor 5,6-dihydroxy-indole-2-carboxylic acid (DHICA) on DNA damage and repair in the presence of reactive oxygen species. Pellosi MC; Suzukawa AA; Scalfo AC; Di Mascio P; Martins Pereira CP; de Souza Pinto NC; de Luna Martins D; Martinez GR Arch Biochem Biophys; 2014 Sep; 557():55-64. PubMed ID: 24893147 [TBL] [Abstract][Full Text] [Related]
16. Energetics of Radical Formation in Eumelanin Building Blocks: Implications for Understanding Photoprotection Mechanisms in Eumelanin. Agapito F; Cabral BJ J Phys Chem A; 2016 Dec; 120(50):10018-10022. PubMed ID: 28002950 [TBL] [Abstract][Full Text] [Related]
17. Intermolecular π-electron perturbations generate extrinsic visible contributions to eumelanin black chromophore in model polymers with interrupted interring conjugation. Ascione L; Pezzella A; Ambrogi V; Carfagna C; d'Ischia M Photochem Photobiol; 2013; 89(2):314-8. PubMed ID: 23002723 [TBL] [Abstract][Full Text] [Related]
18. Hydrogen peroxide generation associated with the oxidations of the eumelanin precursors 5,6-dihydroxyindole and 5,6-dihydroxyindole-2-carboxylic acid. Nappi AJ; Vass E Melanoma Res; 1996 Oct; 6(5):341-9. PubMed ID: 8908594 [TBL] [Abstract][Full Text] [Related]
19. Degree of polymerization of 5,6-dihydroxyindole-derived eumelanin from chemical degradation study. Okuda H; Yoshino K; Wakamatsu K; Ito S; Sota T Pigment Cell Melanoma Res; 2014 Jul; 27(4):664-7. PubMed ID: 24750564 [TBL] [Abstract][Full Text] [Related]
20. Superior photoprotective motifs and mechanisms in eumelanins uncovered. Corani A; Huijser A; Gustavsson T; Markovitsi D; Malmqvist PÅ; Pezzella A; d'Ischia M; Sundström V J Am Chem Soc; 2014 Aug; 136(33):11626-35. PubMed ID: 25078723 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]