These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 39345818)
21. Hyperbaric oxygen facilitates teniposide-induced cGAS-STING activation to enhance the antitumor efficacy of PD-1 antibody in HCC. Li K; Gong Y; Qiu D; Tang H; Zhang J; Yuan Z; Huang Y; Qin Y; Ye L; Yang Y J Immunother Cancer; 2022 Aug; 10(8):. PubMed ID: 36002188 [TBL] [Abstract][Full Text] [Related]
22. Overcoming resistance to STING agonist therapy to incite durable protective antitumor immunity. Lemos H; Ou R; McCardle C; Lin Y; Calver J; Minett J; Chadli A; Huang L; Mellor AL J Immunother Cancer; 2020 Aug; 8(2):. PubMed ID: 32847988 [TBL] [Abstract][Full Text] [Related]
23. Multifunctional hybrid exosomes enhanced cancer chemo-immunotherapy by activating the STING pathway. Cheng L; Zhang P; Liu Y; Liu Z; Tang J; Xu L; Liu J Biomaterials; 2023 Oct; 301():122259. PubMed ID: 37531777 [TBL] [Abstract][Full Text] [Related]
24. Inhibition of tumor intrinsic BANF1 activates antitumor immune responses via cGAS-STING and enhances the efficacy of PD-1 blockade. Wang M; Huang Y; Chen M; Wang W; Wu F; Zhong T; Chen X; Wang F; Li Y; Yu J; Wu M; Chen D J Immunother Cancer; 2023 Aug; 11(8):. PubMed ID: 37620043 [TBL] [Abstract][Full Text] [Related]
25. A 2D Nanoradiosensitizer Enhances Radiotherapy and Delivers STING Agonists to Potentiate Cancer Immunotherapy. Luo T; Nash GT; Jiang X; Feng X; Mao J; Liu J; Juloori A; Pearson AT; Lin W Adv Mater; 2022 Sep; 34(39):e2110588. PubMed ID: 35952624 [TBL] [Abstract][Full Text] [Related]
26. STING agonist diABZI enhances the cytotoxicity of T cell towards cancer cells. Wang L; Liang Z; Guo Y; Habimana JD; Ren Y; Amissah OB; Mukama O; Peng S; Ding X; Lv L; Li J; Chen M; Liu Z; Huang R; Zhang Y; Li Y; Li Z; Sun Y Cell Death Dis; 2024 Apr; 15(4):265. PubMed ID: 38615022 [TBL] [Abstract][Full Text] [Related]
27. Pharmacological Activation of cGAS for Cancer Immunotherapy. Garland KM; Rosch JC; Carson CS; Wang-Bishop L; Hanna A; Sevimli S; Van Kaer C; Balko JM; Ascano M; Wilson JT Front Immunol; 2021; 12():753472. PubMed ID: 34899704 [TBL] [Abstract][Full Text] [Related]
28. STING Agonists as Cancer Therapeutics. Amouzegar A; Chelvanambi M; Filderman JN; Storkus WJ; Luke JJ Cancers (Basel); 2021 May; 13(11):. PubMed ID: 34070756 [TBL] [Abstract][Full Text] [Related]
29. The Development of STING Agonists and Emerging Results as a Cancer Immunotherapy. Hines JB; Kacew AJ; Sweis RF Curr Oncol Rep; 2023 Mar; 25(3):189-199. PubMed ID: 36705879 [TBL] [Abstract][Full Text] [Related]
30. High potency STING agonists engage unique myeloid pathways to reverse pancreatic cancer immune privilege. Ager CR; Boda A; Rajapakshe K; Lea ST; Di Francesco ME; Jayaprakash P; Slay RB; Morrow B; Prasad R; Dean MA; Duffy CR; Coarfa C; Jones P; Curran MA J Immunother Cancer; 2021 Aug; 9(8):. PubMed ID: 34341132 [TBL] [Abstract][Full Text] [Related]
31. STING pathway as a cancer immunotherapy: Progress and challenges in activating anti-tumor immunity. Tabar MMM; Fathi M; Kazemi F; Bazregari G; Ghasemian A Mol Biol Rep; 2024 Apr; 51(1):487. PubMed ID: 38578532 [TBL] [Abstract][Full Text] [Related]
32. Endosomolytic polymersomes increase the activity of cyclic dinucleotide STING agonists to enhance cancer immunotherapy. Shae D; Becker KW; Christov P; Yun DS; Lytton-Jean AKR; Sevimli S; Ascano M; Kelley M; Johnson DB; Balko JM; Wilson JT Nat Nanotechnol; 2019 Mar; 14(3):269-278. PubMed ID: 30664751 [TBL] [Abstract][Full Text] [Related]
33. STING Promotes the Growth of Tumors Characterized by Low Antigenicity via IDO Activation. Lemos H; Mohamed E; Huang L; Ou R; Pacholczyk G; Arbab AS; Munn D; Mellor AL Cancer Res; 2016 Apr; 76(8):2076-81. PubMed ID: 26964621 [TBL] [Abstract][Full Text] [Related]
34. Engineering and Delivery of cGAS-STING Immunomodulators for the Immunotherapy of Cancer and Autoimmune Diseases. Zhou S; Cheng F; Zhang Y; Su T; Zhu G Acc Chem Res; 2023 Nov; 56(21):2933-2943. PubMed ID: 37802125 [TBL] [Abstract][Full Text] [Related]
35. Precisely Activating cGAS-STING Pathway with a Novel Peptide-Based Nanoagonist to Potentiate Immune Checkpoint Blockade Cancer Immunotherapy. Xing Y; Peng A; Yang J; Cheng Z; Yue Y; Liu F; Li F; Liu Y; Liu Q Adv Sci (Weinh); 2024 Apr; 11(15):e2309583. PubMed ID: 38233164 [TBL] [Abstract][Full Text] [Related]
36. Challenges and Opportunities in the Clinical Development of STING Agonists for Cancer Immunotherapy. Motedayen Aval L; Pease JE; Sharma R; Pinato DJ J Clin Med; 2020 Oct; 9(10):. PubMed ID: 33081170 [TBL] [Abstract][Full Text] [Related]
37. Sensitizing Tumors to Immune Checkpoint Blockage via STING Agonists Delivered by Tumor-Penetrating Neutrophil Cytopharmaceuticals. Hao M; Zhu L; Hou S; Chen S; Li X; Li K; Zhu N; Chen S; Xue L; Ju C; Zhang C ACS Nano; 2023 Jan; ():. PubMed ID: 36595464 [TBL] [Abstract][Full Text] [Related]
38. Tumor phagocytosis-driven STING activation invigorates antitumor immunity and reprograms the tumor micro-environment. Lee S; Hong KH; Park H; Ha J; Lee SE; Park DJ; Jeong SD; Kim S; Kim D; Ahn J; Lee HW; Koh WG; Ha SJ; Kim YC J Control Release; 2024 Sep; 373():55-69. PubMed ID: 38971428 [TBL] [Abstract][Full Text] [Related]
39. Triple-Combination Immunogenic Nanovesicles Reshape the Tumor Microenvironment to Potentiate Chemo-Immunotherapy in Preclinical Cancer Models. Shi X; Shu L; Wang M; Yao J; Yao Q; Bian S; Chen X; Wan J; Zhang F; Zheng S; Wang H Adv Sci (Weinh); 2023 May; 10(15):e2204890. PubMed ID: 37017572 [TBL] [Abstract][Full Text] [Related]
40. Co-delivery of Peptide Neoantigens and Stimulator of Interferon Genes Agonists Enhances Response to Cancer Vaccines. Shae D; Baljon JJ; Wehbe M; Christov PP; Becker KW; Kumar A; Suryadevara N; Carson CS; Palmer CR; Knight FC; Joyce S; Wilson JT ACS Nano; 2020 Aug; 14(8):9904-9916. PubMed ID: 32701257 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]