These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 39346851)

  • 1. Study on the Adsorption Law of
    Yu C; Xu Q; Meng F; Liang X; Li Y; Kang X; Lu H; Wu Q; Yang S
    ACS Omega; 2024 Sep; 9(38):40145-40153. PubMed ID: 39346851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study on the Effects of Wettability and Pressure in Shale Matrix Nanopore Imbibition during Shut-in Process by Molecular Dynamics Simulations.
    Jiang W; Lv W; Jia N; Lu X; Wang L; Wang K; Mei Y
    Molecules; 2024 Mar; 29(5):. PubMed ID: 38474624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CH₄ and CO₂ Adsorption Mechanism in Kaolinite Slit Nanopores as Studied by the Grand Canonical Monte Carlo Method.
    Xu C; Xue H; Dong Q; Lu S; Chen G; Zhang Y; Li J; Xue Q; Tong M; Pang X; Ni B
    J Nanosci Nanotechnol; 2021 Jan; 21(1):108-119. PubMed ID: 33213617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption and separation of n/iso-pentane on zeolites: A GCMC study.
    Fu H; Qin H; Wang Y; Liu Y; Yang C; Shan H
    J Mol Graph Model; 2018 Mar; 80():59-66. PubMed ID: 29324325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Grand canonical Monte Carlo simulation of argon adsorption at the surface of silica nanopores: effect of pore size, pore morphology, and surface roughness.
    Coasne B; Pellenq RJ
    J Chem Phys; 2004 Feb; 120(6):2913-22. PubMed ID: 15268439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of Gas Adsorption in Nanoporous Shale by Simplified Local Density Model Integrated with Pore Structure and Pore Size Distribution.
    Pang Y; Wang S; Yao X; Hu X; Chen S
    Langmuir; 2022 Mar; 38(12):3641-3655. PubMed ID: 35297628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport Behavior of Oil in Mixed Wettability Shale Nanopores.
    Zhao G; Yao Y; Adenutsi CD; Feng X; Wang L; Wu W
    ACS Omega; 2020 Dec; 5(49):31831-31844. PubMed ID: 33344837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Research of CO
    Chen G; Lu S; Zhang J; Xue Q; Han T; Xue H; Tian S; Li J; Xu C; Pervukhina M; Clennell B
    Sci Rep; 2016 Nov; 6():37579. PubMed ID: 27897232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption and structure of benzene on silica surfaces and in nanopores.
    Coasne B; Alba-Simionesco C; Audonnet F; Dosseh G; Gubbins KE
    Langmuir; 2009 Sep; 25(18):10648-59. PubMed ID: 19670890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of the Water Content on the Adsorption of CO
    Guo D; Zhang LH; Li XG; Yang X; Zhao YL; Chen X
    Langmuir; 2024 Jan; 40(1):818-826. PubMed ID: 38146702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Giant Effect of CO
    Li J; Li B; Liu Y; Lang Y; Lan Y; Rahman SS
    Langmuir; 2024 Jul; 40(26):13622-13635. PubMed ID: 38904387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Surface Composition on the Microbehaviors of CH
    Sun H; Zhao H; Qi N; Li Y
    ACS Omega; 2017 Nov; 2(11):7600-7608. PubMed ID: 31457320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of Adsorption and Diffusion of Shale Gas in Composite Pores Consisting of Kaolinite and Kerogen using Molecular Simulation.
    Dawass N; Vasileiadis M; Peristeras LD; Papavasileiou KD; Economou IG
    J Phys Chem C Nanomater Interfaces; 2023 May; 127(20):9452-9462. PubMed ID: 38357005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular insights into competitive adsorption of CO
    Zhou W; Zhang Z; Wang H; Yan Y; Liu X
    RSC Adv; 2018 Sep; 8(59):33939-33946. PubMed ID: 35548842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of Methane Excess and Absolute Adsorption in Various Clay Nanopores from Molecular Simulation.
    Tian Y; Yan C; Jin Z
    Sci Rep; 2017 Sep; 7(1):12040. PubMed ID: 28931873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular Dynamics Simulation Study on the Occurrence of Shale Oil in Hybrid Nanopores.
    Fang Y; Li Z; Yang E; Sha M; Song S
    Molecules; 2024 Jan; 29(2):. PubMed ID: 38257225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental Study on the Methane Adsorption of Massive Shale Considering the Effective Stress and the Participation of Nanopores of Varying Sizes.
    Miao F; Wu D; Jia N; Xiao X; Sun W; Ding X; Zhai W; Chen X
    ACS Omega; 2023 May; 8(19):16935-16947. PubMed ID: 37214727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Moisture Contents on Shale Gas Recovery and CO
    Zhou J; Jin Z; Luo KH
    Langmuir; 2019 Jul; 35(26):8716-8725. PubMed ID: 31244260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Competitive sorption of CO
    Sui H; Zhang F; Zhang L; Wang D; Wang Y; Yang Y; Yao J
    Sci Total Environ; 2024 Jan; 908():168356. PubMed ID: 37949136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heat of adsorption, adsorption stress, and optimal storage of methane in slit and cylindrical carbon pores predicted by classical density functional theory.
    Hlushak S
    Phys Chem Chem Phys; 2018 Jan; 20(2):872-888. PubMed ID: 29239426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.