These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Microfluidic-templated cell-laden microgels fabricated using phototriggered imine-crosslinking as injectable and adaptable granular gels for bone regeneration. An C; Zhou R; Zhang H; Zhang Y; Liu W; Liu J; Bao B; Sun K; Ren C; Zhang Y; Lin Q; Zhang L; Cheng F; Song J; Zhu L; Wang H Acta Biomater; 2023 Feb; 157():91-107. PubMed ID: 36427687 [TBL] [Abstract][Full Text] [Related]
7. Cartilage tissue formation through assembly of microgels containing mesenchymal stem cells. Li F; Truong VX; Fisch P; Levinson C; Glattauer V; Zenobi-Wong M; Thissen H; Forsythe JS; Frith JE Acta Biomater; 2018 Sep; 77():48-62. PubMed ID: 30006317 [TBL] [Abstract][Full Text] [Related]
9. Advances in the Development of Granular Microporous Injectable Hydrogels with Non-spherical Microgels and Their Applications in Tissue Regeneration. Li H; Iyer KS; Bao L; Zhai J; Li JJ Adv Healthc Mater; 2024 Oct; 13(25):e2301597. PubMed ID: 37499268 [TBL] [Abstract][Full Text] [Related]
10. Photo-annealable agarose microgels for jammed microgel printing: Transforming thermogelling hydrogel to a functional bioink. Mukundan LM; Das S; Rajasekaran R; Ganguly D; Seesala VS; Dhara S; Chattopadhyay S Int J Biol Macromol; 2024 Oct; 278(Pt 1):134550. PubMed ID: 39116964 [TBL] [Abstract][Full Text] [Related]
11. Granular Hydrogels in Biofabrication: Recent Advances and Future Perspectives. Daly AC Adv Healthc Mater; 2024 Oct; 13(25):e2301388. PubMed ID: 37317658 [TBL] [Abstract][Full Text] [Related]
12. In situ formation of osteochondral interfaces through "bone-ink" printing in tailored microgel suspensions. Jalandhra GK; Molley TG; Hung TT; Roohani I; Kilian KA Acta Biomater; 2023 Jan; 156():75-87. PubMed ID: 36055612 [TBL] [Abstract][Full Text] [Related]
13. Dynamically crosslinked thermoresponsive granular hydrogels. Lee HP; Cai KX; Wang TC; Davis R; Deo K; Singh KA; Lele TP; Gaharwar AK J Biomed Mater Res A; 2023 Oct; 111(10):1577-1587. PubMed ID: 37199446 [TBL] [Abstract][Full Text] [Related]
14. Influence of the Degree of Swelling on the Stiffness and Toughness of Microgel-Reinforced Hydrogels. Kessler M; Yuan T; Kolinski JM; Amstad E Macromol Rapid Commun; 2023 Aug; 44(16):e2200864. PubMed ID: 36809684 [TBL] [Abstract][Full Text] [Related]
15. Nanoscale Thermosensitive Hydrogel Scaffolds Promote the Chondrogenic Differentiation of Dental Pulp Stem and Progenitor Cells: A Minimally Invasive Approach for Cartilage Regeneration. Talaat W; Aryal Ac S; Al Kawas S; Samsudin ABR; Kandile NG; Harding DRK; Ghoneim MM; Zeiada W; Jagal J; Aboelnaga A; Haider M Int J Nanomedicine; 2020; 15():7775-7789. PubMed ID: 33116500 [TBL] [Abstract][Full Text] [Related]
16. Novel microgel-based scaffolds to study the effect of degradability on human dermal fibroblasts. Zhou W; Stukel J; AlNiemi A; Willits RK Biomed Mater; 2018 Jul; 13(5):055007. PubMed ID: 29869613 [TBL] [Abstract][Full Text] [Related]
17. Engineering Microgel Packing to Tailor the Physical and Biological Properties of Gelatin Methacryloyl Granular Hydrogel Scaffolds. Jaberi A; Kedzierski A; Kheirabadi S; Tagay Y; Ataie Z; Zavari S; Naghashnejad M; Waldron O; Adhikari D; Lester G; Gallagher C; Borhan A; Ravnic D; Tabdanov E; Sheikhi A Adv Healthc Mater; 2024 Oct; 13(25):e2402489. PubMed ID: 39152936 [TBL] [Abstract][Full Text] [Related]
18. Fragmenting Bulk Hydrogels and Processing into Granular Hydrogels for Biomedical Applications. Muir VG; Prendergast ME; Burdick JA J Vis Exp; 2022 May; (183):. PubMed ID: 35662235 [TBL] [Abstract][Full Text] [Related]
19. Granular hydrogels with tunable properties prepared from gum Arabic and protein microgels. Kan X; Zhang S; Kwok E; Chu Y; Chen L; Zeng X Int J Biol Macromol; 2024 Jul; 273(Pt 2):132878. PubMed ID: 38844277 [TBL] [Abstract][Full Text] [Related]