These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 39347773)
1. Multiple imputation of missing data in large studies with many variables: A fully conditional specification approach using partial least squares. Grund S; Lüdtke O; Robitzsch A Psychol Methods; 2024 Sep; ():. PubMed ID: 39347773 [TBL] [Abstract][Full Text] [Related]
2. Multiple imputation for handling missing outcome data when estimating the relative risk. Sullivan TR; Lee KJ; Ryan P; Salter AB BMC Med Res Methodol; 2017 Sep; 17(1):134. PubMed ID: 28877666 [TBL] [Abstract][Full Text] [Related]
3. A comparison of multiple imputation methods for handling missing values in longitudinal data in the presence of a time-varying covariate with a non-linear association with time: a simulation study. De Silva AP; Moreno-Betancur M; De Livera AM; Lee KJ; Simpson JA BMC Med Res Methodol; 2017 Jul; 17(1):114. PubMed ID: 28743256 [TBL] [Abstract][Full Text] [Related]
4. A factored regression model for composite scores with item-level missing data. Alacam E; Enders CK; Du H; Keller BT Psychol Methods; 2023 May; ():. PubMed ID: 37227897 [TBL] [Abstract][Full Text] [Related]
5. Multiple imputation methods for handling missing values in a longitudinal categorical variable with restrictions on transitions over time: a simulation study. De Silva AP; Moreno-Betancur M; De Livera AM; Lee KJ; Simpson JA BMC Med Res Methodol; 2019 Jan; 19(1):14. PubMed ID: 30630434 [TBL] [Abstract][Full Text] [Related]
6. Multiple imputation methods for handling incomplete longitudinal and clustered data where the target analysis is a linear mixed effects model. Huque MH; Moreno-Betancur M; Quartagno M; Simpson JA; Carlin JB; Lee KJ Biom J; 2020 Mar; 62(2):444-466. PubMed ID: 31919921 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of approaches for multiple imputation of three-level data. Wijesuriya R; Moreno-Betancur M; Carlin JB; Lee KJ BMC Med Res Methodol; 2020 Aug; 20(1):207. PubMed ID: 32787781 [TBL] [Abstract][Full Text] [Related]
8. Evaluating FIML and multiple imputation in joint ordinal-continuous measurements models with missing data. Lim AJ; Cheung MW Behav Res Methods; 2022 Jun; 54(3):1063-1077. PubMed ID: 34545537 [TBL] [Abstract][Full Text] [Related]
9. Multiple Imputation by Fully Conditional Specification for Dealing with Missing Data in a Large Epidemiologic Study. Liu Y; De A Int J Stat Med Res; 2015; 4(3):287-295. PubMed ID: 27429686 [TBL] [Abstract][Full Text] [Related]
10. A fully conditional specification approach to multilevel imputation of categorical and continuous variables. Enders CK; Keller BT; Levy R Psychol Methods; 2018 Jun; 23(2):298-317. PubMed ID: 28557466 [TBL] [Abstract][Full Text] [Related]
11. A comparison of multiple imputation strategies for handling missing data in multi-item scales: Guidance for longitudinal studies. Mainzer R; Apajee J; Nguyen CD; Carlin JB; Lee KJ Stat Med; 2021 Sep; 40(21):4660-4674. PubMed ID: 34102709 [TBL] [Abstract][Full Text] [Related]
12. Multiple imputation for discrete data: Evaluation of the joint latent normal model. Quartagno M; Carpenter JR Biom J; 2019 Jul; 61(4):1003-1019. PubMed ID: 30868652 [TBL] [Abstract][Full Text] [Related]
13. How to apply variable selection machine learning algorithms with multiply imputed data: A missing discussion. Gunn HJ; Hayati Rezvan P; Fernández MI; Comulada WS Psychol Methods; 2023 Apr; 28(2):452-471. PubMed ID: 35113633 [TBL] [Abstract][Full Text] [Related]
14. Multiple imputation in the presence of an incomplete binary variable created from an underlying continuous variable. Grobler AC; Lee K Biom J; 2020 Mar; 62(2):467-478. PubMed ID: 31304611 [TBL] [Abstract][Full Text] [Related]
15. A model-based imputation procedure for multilevel regression models with random coefficients, interaction effects, and nonlinear terms. Enders CK; Du H; Keller BT Psychol Methods; 2020 Feb; 25(1):88-112. PubMed ID: 31259566 [TBL] [Abstract][Full Text] [Related]
16. Handling missing data in partially clustered randomized controlled trials. Yang M; Gaskin DJ Psychol Methods; 2023 Nov; ():. PubMed ID: 37930636 [TBL] [Abstract][Full Text] [Related]
17. A true score imputation method to account for psychometric measurement error. Mansolf M Psychol Methods; 2023 May; ():. PubMed ID: 37227895 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of two-fold fully conditional specification multiple imputation for longitudinal electronic health record data. Welch CA; Petersen I; Bartlett JW; White IR; Marston L; Morris RW; Nazareth I; Walters K; Carpenter J Stat Med; 2014 Sep; 33(21):3725-37. PubMed ID: 24782349 [TBL] [Abstract][Full Text] [Related]
19. Non-parametric approach for frequentist multiple imputation in survival analysis with missing covariates. Takeuchi Y; Ogawa M; Hagiwara Y; Matsuyama Y Stat Methods Med Res; 2021 Jul; 30(7):1691-1707. PubMed ID: 34110942 [TBL] [Abstract][Full Text] [Related]
20. Multiple imputation methods for handling missing values in longitudinal studies with sampling weights: Comparison of methods implemented in Stata. De Silva AP; De Livera AM; Lee KJ; Moreno-Betancur M; Simpson JA Biom J; 2021 Feb; 63(2):354-371. PubMed ID: 33103307 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]