These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 39347936)
1. Predicting the potential associations between circRNA and drug sensitivity using a multisource feature-based approach. Yin S; Xu P; Jiang Y; Yang X; Lin Y; Zheng M; Hu J; Zhao Q J Cell Mol Med; 2024 Oct; 28(19):e18591. PubMed ID: 39347936 [TBL] [Abstract][Full Text] [Related]
2. DeepWalk-aware graph attention networks with CNN for circRNA-drug sensitivity association identification. Li G; Li Y; Liang C; Luo J Brief Funct Genomics; 2024 Jul; 23(4):418-428. PubMed ID: 38061910 [TBL] [Abstract][Full Text] [Related]
3. Predicting CircRNA-Disease Associations via Feature Convolution Learning With Heterogeneous Graph Attention Network. Peng L; Yang C; Chen Y; Liu W IEEE J Biomed Health Inform; 2023 Jun; 27(6):3072-3082. PubMed ID: 37030839 [TBL] [Abstract][Full Text] [Related]
4. DPMGCDA: Deciphering circRNA-Drug Sensitivity Associations with Dual Perspective Learning and Path-Masked Graph Autoencoder. Luo Y; Deng L J Chem Inf Model; 2024 May; 64(10):4359-4372. PubMed ID: 38745420 [TBL] [Abstract][Full Text] [Related]
5. Exploring potential circRNA biomarkers for cancers based on double-line heterogeneous graph representation learning. Zhang Y; Wang Z; Wei H; Chen M BMC Med Inform Decis Mak; 2024 Jun; 24(1):159. PubMed ID: 38844961 [TBL] [Abstract][Full Text] [Related]
6. GCNCDA: A new method for predicting circRNA-disease associations based on Graph Convolutional Network Algorithm. Wang L; You ZH; Li YM; Zheng K; Huang YA PLoS Comput Biol; 2020 May; 16(5):e1007568. PubMed ID: 32433655 [TBL] [Abstract][Full Text] [Related]
7. Prediction of circRNA-Disease Associations Based on the Combination of Multi-Head Graph Attention Network and Graph Convolutional Network. Cao R; He C; Wei P; Su Y; Xia J; Zheng C Biomolecules; 2022 Jul; 12(7):. PubMed ID: 35883487 [TBL] [Abstract][Full Text] [Related]
8. IGNSCDA: Predicting CircRNA-Disease Associations Based on Improved Graph Convolutional Network and Negative Sampling. Lan W; Dong Y; Chen Q; Liu J; Wang J; Chen YP; Pan S IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3530-3538. PubMed ID: 34506289 [TBL] [Abstract][Full Text] [Related]
9. MNCLCDA: predicting circRNA-drug sensitivity associations by using mixed neighbourhood information and contrastive learning. Li G; Zeng F; Luo J; Liang C; Xiao Q BMC Med Inform Decis Mak; 2023 Dec; 23(1):291. PubMed ID: 38110886 [TBL] [Abstract][Full Text] [Related]
10. GGAECDA: Predicting circRNA-disease associations using graph autoencoder based on graph representation learning. Li G; Lin Y; Luo J; Xiao Q; Liang C Comput Biol Chem; 2022 Aug; 99():107722. PubMed ID: 35810557 [TBL] [Abstract][Full Text] [Related]
11. RDGAN: Prediction of circRNA-Disease Associations via Resistance Distance and Graph Attention Network. Lu P; Wang Y IEEE/ACM Trans Comput Biol Bioinform; 2024; 21(5):1445-1457. PubMed ID: 38787672 [TBL] [Abstract][Full Text] [Related]
12. An ensemble approach for CircRNA-disease association prediction based on autoencoder and deep neural network. Deepthi K; Jereesh AS Gene; 2020 Dec; 762():145040. PubMed ID: 32777520 [TBL] [Abstract][Full Text] [Related]
13. Convolution Neural Networks Using Deep Matrix Factorization for Predicting Circrna-Disease Association. Liu ZH; Ji CM; Ni JC; Wang YT; Qiao LJ; Zheng CH IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):277-284. PubMed ID: 34951853 [TBL] [Abstract][Full Text] [Related]
14. Predicting circRNA-drug sensitivity associations via graph attention auto-encoder. Deng L; Liu Z; Qian Y; Zhang J BMC Bioinformatics; 2022 May; 23(1):160. PubMed ID: 35508967 [TBL] [Abstract][Full Text] [Related]
15. GATNNCDA: A Method Based on Graph Attention Network and Multi-Layer Neural Network for Predicting circRNA-Disease Associations. Ji C; Liu Z; Wang Y; Ni J; Zheng C Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445212 [TBL] [Abstract][Full Text] [Related]
17. RNMFLP: Predicting circRNA-disease associations based on robust nonnegative matrix factorization and label propagation. Peng L; Yang C; Huang L; Chen X; Fu X; Liu W Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35534179 [TBL] [Abstract][Full Text] [Related]
18. Predicting circRNA-drug sensitivity associations by learning multimodal networks using graph auto-encoders and attention mechanism. Yang B; Chen H Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36617209 [TBL] [Abstract][Full Text] [Related]
19. GraphCDA: a hybrid graph representation learning framework based on GCN and GAT for predicting disease-associated circRNAs. Dai Q; Liu Z; Wang Z; Duan X; Guo M Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36070619 [TBL] [Abstract][Full Text] [Related]
20. DCDA: CircRNA-Disease Association Prediction with Feed-Forward Neural Network and Deep Autoencoder. Turgut H; Turanli B; Boz B Interdiscip Sci; 2024 Mar; 16(1):91-103. PubMed ID: 37978116 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]