These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 39347936)
21. iCircDA-MF: identification of circRNA-disease associations based on matrix factorization. Wei H; Liu B Brief Bioinform; 2020 Jul; 21(4):1356-1367. PubMed ID: 31197324 [TBL] [Abstract][Full Text] [Related]
22. Prediction of circRNA-MiRNA Association Using Singular Value Decomposition and Graph Neural Networks. Qian Y; Zheng J; Jiang Y; Li S; Deng L IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(6):3461-3468. PubMed ID: 36395130 [TBL] [Abstract][Full Text] [Related]
23. Potential circRNA-Disease Association Prediction Using DeepWalk and Nonnegative Matrix Factorization. Qiao LJ; Gao Z; Ji CM; Liu ZH; Zheng CH; Wang YT IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(5):3154-3162. PubMed ID: 37018084 [TBL] [Abstract][Full Text] [Related]
24. GEHGAN: CircRNA-disease association prediction via graph embedding and heterogeneous graph attention network. Wang Y; Lu P Comput Biol Chem; 2024 Jun; 110():108079. PubMed ID: 38704917 [TBL] [Abstract][Full Text] [Related]
25. Predicting human disease-associated circRNAs based on locality-constrained linear coding. Ge E; Yang Y; Gang M; Fan C; Zhao Q Genomics; 2020 Mar; 112(2):1335-1342. PubMed ID: 31394170 [TBL] [Abstract][Full Text] [Related]
26. SGFCCDA: Scale Graph Convolutional Networks and Feature Convolution for circRNA-Disease Association Prediction. Shang J; Zhao L; He X; Meng X; Zhang L; Ge D; Li F; Liu JX IEEE J Biomed Health Inform; 2024 Nov; 28(11):7006-7014. PubMed ID: 39250355 [TBL] [Abstract][Full Text] [Related]
27. Inferring Potential CircRNA-Disease Associations via Deep Autoencoder-Based Classification. Deepthi K; Jereesh AS Mol Diagn Ther; 2021 Jan; 25(1):87-97. PubMed ID: 33156515 [TBL] [Abstract][Full Text] [Related]
28. Likelihood-based feature representation learning combined with neighborhood information for predicting circRNA-miRNA associations. Guo LX; Wang L; You ZH; Yu CQ; Hu ML; Zhao BW; Li Y Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38324624 [TBL] [Abstract][Full Text] [Related]
29. CDA-SKAG: Predicting circRNA-disease associations using similarity kernel fusion and an attention-enhancing graph autoencoder. Wang H; Han J; Li H; Duan L; Liu Z; Cheng H Math Biosci Eng; 2023 Feb; 20(5):7957-7980. PubMed ID: 37161181 [TBL] [Abstract][Full Text] [Related]
30. KGANCDA: predicting circRNA-disease associations based on knowledge graph attention network. Lan W; Dong Y; Chen Q; Zheng R; Liu J; Pan Y; Chen YP Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34864877 [TBL] [Abstract][Full Text] [Related]
31. LGCDA: Predicting CircRNA-Disease Association Based on Fusion of Local and Global Features. Lan W; Li C; Chen Q; Yu N; Pan Y; Zheng Y; Chen YP IEEE/ACM Trans Comput Biol Bioinform; 2024; 21(5):1413-1422. PubMed ID: 38607720 [TBL] [Abstract][Full Text] [Related]
32. Collaborative deep learning improves disease-related circRNA prediction based on multi-source functional information. Wang Y; Liu X; Shen Y; Song X; Wang T; Shang X; Peng J Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36847701 [TBL] [Abstract][Full Text] [Related]
33. CRIECNN: Ensemble convolutional neural network and advanced feature extraction methods for the precise forecasting of circRNA-RBP binding sites. Lasantha D; Vidanagamachchi S; Nallaperuma S Comput Biol Med; 2024 May; 174():108466. PubMed ID: 38615462 [TBL] [Abstract][Full Text] [Related]
34. Predicting circRNA-Disease Associations Based on Deep Matrix Factorization with Multi-source Fusion. Xie G; Chen H; Sun Y; Gu G; Lin Z; Wang W; Li J Interdiscip Sci; 2021 Dec; 13(4):582-594. PubMed ID: 34185304 [TBL] [Abstract][Full Text] [Related]
35. Prioritizing CircRNA-Disease Associations With Convolutional Neural Network Based on Multiple Similarity Feature Fusion. Fan C; Lei X; Pan Y Front Genet; 2020; 11():540751. PubMed ID: 33193615 [TBL] [Abstract][Full Text] [Related]
36. LMGATCDA: Graph Neural Network With Labeling Trick for Predicting circRNA-Disease Associations. Wang W; Han P; Li Z; Nie R; Wang K; Wang L; Liao H IEEE/ACM Trans Comput Biol Bioinform; 2024; 21(2):289-300. PubMed ID: 38231821 [TBL] [Abstract][Full Text] [Related]
37. circRNA-binding protein site prediction based on multi-view deep learning, subspace learning and multi-view classifier. Li H; Deng Z; Yang H; Pan X; Wei Z; Shen HB; Choi KS; Wang L; Wang S; Wu J Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34571539 [TBL] [Abstract][Full Text] [Related]
38. Inferring disease-associated circRNAs by multi-source aggregation based on heterogeneous graph neural network. Lu C; Zhang L; Zeng M; Lan W; Duan G; Wang J Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36572658 [TBL] [Abstract][Full Text] [Related]
39. Identification of circRNA-disease associations via multi-model fusion and ensemble learning. Yang J; Lei X; Zhang F J Cell Mol Med; 2024 Apr; 28(7):e18180. PubMed ID: 38506066 [TBL] [Abstract][Full Text] [Related]
40. GMNN2CD: identification of circRNA-disease associations based on variational inference and graph Markov neural networks. Niu M; Zou Q; Wang C Bioinformatics; 2022 Apr; 38(8):2246-2253. PubMed ID: 35157027 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]