These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 39347983)

  • 1. A novel SNP within the Rsa10025320 gene is highly associated with hollowness in red-skinned radish fleshy roots.
    Wei D; Zhang C; Ran M; Wu J; Li X; Wu H; Wang Z; Tang Q; Yang F
    Theor Appl Genet; 2024 Sep; 137(10):242. PubMed ID: 39347983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptome profiling of radish (Raphanus sativus L.) root and identification of genes involved in response to Lead (Pb) stress with next generation sequencing.
    Wang Y; Xu L; Chen Y; Shen H; Gong Y; Limera C; Liu L
    PLoS One; 2013; 8(6):e66539. PubMed ID: 23840502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic and physiological analyses of root cracking in radish (Raphanus sativus L.).
    Yu X; Choi SR; Chhapekar SS; Lu L; Ma Y; Lee JY; Hong S; Kim YY; Oh SH; Lim YP
    Theor Appl Genet; 2019 Dec; 132(12):3425-3437. PubMed ID: 31562568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of candidate genes controlling cold tolerance at the early seedling stage from Dongxiang wild rice by QTL mapping, BSA-Seq and RNA-Seq.
    Zhou S; Wu T; Li X; Wang S; Hu B
    BMC Plant Biol; 2024 Jul; 24(1):649. PubMed ID: 38977989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. QTL analysis using SNP markers developed by next-generation sequencing for identification of candidate genes controlling 4-methylthio-3-butenyl glucosinolate contents in roots of radish, Raphanus sativus L.
    Zou Z; Ishida M; Li F; Kakizaki T; Suzuki S; Kitashiba H; Nishio T
    PLoS One; 2013; 8(1):e53541. PubMed ID: 23308250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and differential expression analysis of anthocyanin biosynthetic genes in root-skin color variants of radish (Raphanus sativus L.).
    Yu R; Du X; Li J; Liu L; Hu C; Yan X; Xia Y; Xu H
    Genes Genomics; 2020 Apr; 42(4):413-424. PubMed ID: 31997158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of differential expression genes related to anthocyanin biosynthesis in carmine radish (Raphanus sativus L.) fleshy roots using comparative RNA-Seq method.
    Gao J; Li WB; Liu HF; Chen FB
    PLoS One; 2020; 15(4):e0231729. PubMed ID: 32330148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. De novo transcriptome sequencing of radish (Raphanus sativus L.) fleshy roots: analysis of major genes involved in the anthocyanin synthesis pathway.
    Gao J; Li WB; Liu HF; Chen FB
    BMC Mol Cell Biol; 2019 Oct; 20(1):45. PubMed ID: 31646986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fine mapping and analysis of candidate genes for qBT2 and qBT7.2 locus controlling bolting time in radish (Raphanus sativus L.).
    Jin Y; Luo X; Li Y; Peng X; Wu L; Yang G; Xu X; Pei Y; Li W; Zhang W
    Theor Appl Genet; 2023 Dec; 137(1):4. PubMed ID: 38085292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A high-resolution linkage map of the Rfd1, a restorer-of-fertility locus for cytoplasmic male sterility in radish (Raphanus sativus L.) produced by a combination of bulked segregant analysis and RNA-Seq.
    Lee YP; Cho Y; Kim S
    Theor Appl Genet; 2014 Oct; 127(10):2243-52. PubMed ID: 25119873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of a high-resolution linkage map of Rfd1, a restorer-of-fertility locus for cytoplasmic male sterility conferred by DCGMS cytoplasm in radish (Raphanus sativus L.) using synteny between radish and Arabidopsis genomes.
    Cho Y; Lee YP; Park BS; Han TH; Kim S
    Theor Appl Genet; 2012 Aug; 125(3):467-77. PubMed ID: 22434503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide sRNA and mRNA transcriptomic profiling insights into dynamic regulation of taproot thickening in radish (Raphanus sativus L.).
    Xie Y; Ying J; Xu L; Wang Y; Dong J; Chen Y; Tang M; Li C; M'mbone Muleke E; Liu L
    BMC Plant Biol; 2020 Aug; 20(1):373. PubMed ID: 32770962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptomic dynamics changes related to anthocyanin accumulation in the fleshy roots of carmine radish (
    Song X; Gao J; Peng H
    PeerJ; 2021; 9():e10978. PubMed ID: 33868802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An ultra-high-density genetic map provides insights into genome synteny, recombination landscape and taproot skin colour in radish (Raphanus sativus L.).
    Luo X; Xu L; Wang Y; Dong J; Chen Y; Tang M; Fan L; Zhu Y; Liu L
    Plant Biotechnol J; 2020 Jan; 18(1):274-286. PubMed ID: 31218798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. De novo transcriptome sequencing of radish (Raphanus sativus L.) and analysis of major genes involved in glucosinolate metabolism.
    Wang Y; Pan Y; Liu Z; Zhu X; Zhai L; Xu L; Yu R; Gong Y; Liu L
    BMC Genomics; 2013 Nov; 14(1):836. PubMed ID: 24279309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptome-based gene expression profiling identifies differentially expressed genes critical for salt stress response in radish (Raphanus sativus L.).
    Sun X; Xu L; Wang Y; Luo X; Zhu X; Kinuthia KB; Nie S; Feng H; Li C; Liu L
    Plant Cell Rep; 2016 Feb; 35(2):329-46. PubMed ID: 26518430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined QTL-Seq and Traditional Linkage Analysis to Identify Candidate Genes for Purple Skin of Radish Fleshy Taproots.
    Liu T; Wang J; Wu C; Zhang Y; Zhang X; Li X; Wang H; Song J; Li X
    Front Genet; 2019; 10():808. PubMed ID: 31608100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of 'Xinlimei' radish candidate genes associated with anthocyanin biosynthesis based on a transcriptome analysis.
    Sun Y; Wang J; Qiu Y; Liu T; Song J; Li X
    Gene; 2018 May; 657():81-91. PubMed ID: 29518548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of candidate domestication regions in the radish genome based on high-depth resequencing analysis of 17 genotypes.
    Kim N; Jeong YM; Jeong S; Kim GB; Baek S; Kwon YE; Cho A; Choi SB; Kim J; Lim WJ; Kim KH; Park W; Kim JY; Kim JH; Yim B; Lee YJ; Chun BM; Lee YP; Park BS; Yu HJ; Mun JH
    Theor Appl Genet; 2016 Sep; 129(9):1797-814. PubMed ID: 27377547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined widely targeted metabolomics and transcriptomics analysis reveals differentially accumulated metabolites and the underlying molecular bases in fleshy taproots of distinct radish genotypes.
    Liu T; Liu T; Zhang X; Song J; Qiu Y; Yang W; Jia H; Wang H; Li X
    Plant Physiol Biochem; 2023 Feb; 195():351-361. PubMed ID: 36681065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.