These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 39349838)

  • 1. The epidemiological footprint of contact structures in models with two levels of mixing.
    Bansaye V; Deslandes F; Kubasch M; Vergu E
    J Math Biol; 2024 Sep; 89(4):45. PubMed ID: 39349838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recalibrating disease parameters for increasing realism in modeling epidemics in closed settings.
    Bioglio L; Génois M; Vestergaard CL; Poletto C; Barrat A; Colizza V
    BMC Infect Dis; 2016 Nov; 16(1):676. PubMed ID: 27842507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitigating COVID-19 outbreaks in workplaces and schools by hybrid telecommuting.
    Mauras S; Cohen-Addad V; Duboc G; Dupré la Tour M; Frasca P; Mathieu C; Opatowski L; Viennot L
    PLoS Comput Biol; 2021 Aug; 17(8):e1009264. PubMed ID: 34437531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reproduction numbers for epidemic models with households and other social structures II: Comparisons and implications for vaccination.
    Ball F; Pellis L; Trapman P
    Math Biosci; 2016 Apr; 274():108-39. PubMed ID: 26845663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epidemic growth rate and household reproduction number in communities of households, schools and workplaces.
    Pellis L; Ferguson NM; Fraser C
    J Math Biol; 2011 Oct; 63(4):691-734. PubMed ID: 21120484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stochastic SIR epidemics in a population with households and schools.
    Ouboter T; Meester R; Trapman P
    J Math Biol; 2016 Apr; 72(5):1177-93. PubMed ID: 26070348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Network epidemic models with two levels of mixing.
    Ball F; Neal P
    Math Biosci; 2008 Mar; 212(1):69-87. PubMed ID: 18280521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimating the within-household infection rate in emerging SIR epidemics among a community of households.
    Ball F; Shaw L
    J Math Biol; 2015 Dec; 71(6-7):1705-35. PubMed ID: 25820343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epidemic Landscape and Forecasting of SARS-CoV-2 in India.
    Rajendrakumar AL; Nair ATN; Nangia C; Chourasia PK; Chourasia MK; Syed MG; Nair AS; Nair AB; Koya MSF
    J Epidemiol Glob Health; 2021 Mar; 11(1):55-59. PubMed ID: 32959618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global dynamics of COVID-19 epidemic model with recessive infection and isolation.
    Yuan R; Ma Y; Shen C; Zhao J; Luo X; Liu M
    Math Biosci Eng; 2021 Feb; 18(2):1833-1844. PubMed ID: 33757213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of vaccination strategies for SIR epidemics on random networks incorporating household structure.
    Ball F; Sirl D
    J Math Biol; 2018 Jan; 76(1-2):483-530. PubMed ID: 28634747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The time to extinction for a stochastic SIS-household-epidemic model.
    Britton T; Neal P
    J Math Biol; 2010 Dec; 61(6):763-79. PubMed ID: 20039041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An SIS epidemic model with individual variation.
    Pollett PK
    Math Biosci Eng; 2024 Mar; 21(4):5446-5455. PubMed ID: 38872543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Network Epidemic Model with Preventive Rewiring: Comparative Analysis of the Initial Phase.
    Britton T; Juher D; Saldaña J
    Bull Math Biol; 2016 Dec; 78(12):2427-2454. PubMed ID: 27800576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beyond SIRD models: a novel dynamic model for epidemics, relating infected with entries to health care units and application for identification and restraining policy.
    Tsiliyannis C
    Math Med Biol; 2024 Sep; 41(3):192-224. PubMed ID: 39155487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing the feasibility and effectiveness of household-pooled universal testing to control COVID-19 epidemics.
    Libin PJK; Willem L; Verstraeten T; Torneri A; Vanderlocht J; Hens N
    PLoS Comput Biol; 2021 Mar; 17(3):e1008688. PubMed ID: 33690626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Markovian Approach for Exploring Competitive Diseases with Heterogeneity-Evidence from COVID-19 and Influenza in China.
    Gao X; Xu Y
    Bull Math Biol; 2024 May; 86(6):71. PubMed ID: 38719993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A theta-scheme approximation of basic reproduction number for an age-structured epidemic system in a finite horizon.
    Guo WJ; Ye M; Li XN; Meyer-Baese A; Zhang QM
    Math Biosci Eng; 2019 May; 16(5):4107-4121. PubMed ID: 31499653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An SIS model for the epidemic dynamics with two phases of the human day-to-day activity.
    Seno H
    J Math Biol; 2020 Jun; 80(7):2109-2140. PubMed ID: 32270285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alternative Strategies for the Estimation of a Disease's Basic Reproduction Number: A Model-Agnostic Study.
    Páez GN; Cerón JF; Cortés S; Quiroz AJ; Zea JF; Franco C; Cruz É; Vargas G; Castañeda C
    Bull Math Biol; 2021 Jul; 83(8):89. PubMed ID: 34216281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.