BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 3934986)

  • 1. Mechanisms of accumulation of arachidonic acid in cultured myocardial cells during ATP depletion.
    Gunn MD; Sen A; Chang A; Willerson JT; Buja LM; Chien KR
    Am J Physiol; 1985 Dec; 249(6 Pt 2):H1188-94. PubMed ID: 3934986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Release of arachidonate from membrane phospholipids in cultured neonatal rat myocardial cells during adenosine triphosphate depletion. Correlation with the progression of cell injury.
    Chien KR; Sen A; Reynolds R; Chang A; Kim Y; Gunn MD; Buja LM; Willerson JT
    J Clin Invest; 1985 Jun; 75(6):1770-80. PubMed ID: 3924955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduced arachidonate metabolism in ATP-depleted myocardial cells occurs early in cell injury.
    Revtyak GE; Buja LM; Chien KR; Campbell WB
    Am J Physiol; 1990 Aug; 259(2 Pt 2):H582-91. PubMed ID: 2117403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Association between inhibition of arachidonic acid release and prevention of calcium loading during ATP depletion in cultured rat cardiac myocytes.
    Jones RL; Miller JC; Hagler HK; Chien KR; Willerson JT; Buja LM
    Am J Pathol; 1989 Sep; 135(3):541-56. PubMed ID: 2506756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of the release of arachidonic acid prevents the development of sarcolemmal membrane defects in cultured rat myocardial cells during adenosine triphosphate depletion.
    Sen A; Miller JC; Reynolds R; Willerson JT; Buja LM; Chien KR
    J Clin Invest; 1988 Oct; 82(4):1333-8. PubMed ID: 3139713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Turnover of palmitate, arachidonate and glycerol in phospholipids of rat rod outer segments.
    Wetzel MG; O'Brien PJ
    Exp Eye Res; 1986 Dec; 43(6):941-54. PubMed ID: 3102272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of anoxia on lipid metabolism in isolated adult rat cardiac myocytes.
    Hagve TA; Sprecher H; Hohl CM
    J Mol Cell Cardiol; 1990 Dec; 22(12):1467-75. PubMed ID: 2128522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accumulation of unesterified arachidonic acid in ischemic canine myocardium. Relationship to a phosphatidylcholine deacylation-reacylation cycle and the depletion of membrane phospholipids.
    Chien KR; Han A; Sen A; Buja LM; Willerson JT
    Circ Res; 1984 Mar; 54(3):313-22. PubMed ID: 6421507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the stimulatory effects of PGF2alpha on the release of arachidonic acid.
    Morita I; Nakayama Y; Murota SI
    Prostaglandins; 1979 Oct; 18(4):507-17. PubMed ID: 531223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of calcium loading and impaired energy production on metabolic and ultrastructural features of cell injury in cultured neonatal rat cardiac myocytes.
    Buja LM; Fattor RA; Miller JC; Chien KR; Willerson JT
    Lab Invest; 1990 Sep; 63(3):320-31. PubMed ID: 2168502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochemical and subcellular distribution of arachidonic acid in rat myocardium.
    Miyazaki Y; Gross RW; Sobel BE; Saffitz JE
    Am J Physiol; 1987 Dec; 253(6 Pt 1):C846-53. PubMed ID: 3122582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Source of the arachidonic acid released on stimulation of rat basophilic leukemia cells.
    Garcia-Gil M; Siraganian RP
    J Immunol; 1986 May; 136(10):3825-8. PubMed ID: 2422263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glucose is essential for the initiation of fatty acid oxidation in ATP-depleted cultured ventricular myocytes.
    Tirosh R; Mishor T; Pinson A
    Mol Cell Biochem; 1996 Sep; 162(2):159-63. PubMed ID: 8905640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accumulation of arachidonate in triacylglycerols and unesterified fatty acids during ischemia and reflow in the isolated rat heart. Correlation with the loss of contractile function and the development of calcium overload.
    Burton KP; Buja LM; Sen A; Willerson JT; Chien KR
    Am J Pathol; 1986 Aug; 124(2):238-45. PubMed ID: 3090888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibitory effect of exogenous arachidonic acid on alveolar macrophage 5-lipoxygenase metabolism. Role of ATP depletion.
    Peters-Golden M; Shelly C
    J Immunol; 1988 Mar; 140(6):1958-66. PubMed ID: 3126237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of postdecapitation ischemia on the metabolism of [14C]arachidonic acid and [14C]palmitic acid in the mouse brain.
    Pediconi MF; Rodriguez de Turco EB; Bazan NG
    Neurochem Res; 1983 Jul; 8(7):835-45. PubMed ID: 6413872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Source of arachidonic acid for prostaglandin synthesis in Madin-Darby canine kidney cells.
    Daniel LW; King L; Waite M
    J Biol Chem; 1981 Dec; 256(24):12830-5. PubMed ID: 6796579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High oligomycin concentrations augment 6-keto-PGF1 alpha production in ventricular cardiomyocytes.
    Pinson A; Zilberman Y; Tirosh R; Trembovler V; Shohami E
    Biochim Biophys Acta; 1994 Mar; 1211(3):283-8. PubMed ID: 8130261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epinephrine increases ATP production in hearts by preferentially increasing glucose metabolism.
    Collins-Nakai RL; Noseworthy D; Lopaschuk GD
    Am J Physiol; 1994 Nov; 267(5 Pt 2):H1862-71. PubMed ID: 7977816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contributing factors in the trafficking of [3H]arachidonate between phospholipids.
    Blank ML; Smith ZL; Snyder F
    Biochim Biophys Acta; 1992 Mar; 1124(3):262-72. PubMed ID: 1576167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.