These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 39350066)

  • 1. Predicting RNA sequence-structure likelihood via structure-aware deep learning.
    Zhou Y; Pedrielli G; Zhang F; Wu T
    BMC Bioinformatics; 2024 Sep; 25(1):316. PubMed ID: 39350066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. sincFold: end-to-end learning of short- and long-range interactions in RNA secondary structure.
    Bugnon LA; Di Persia L; Gerard M; Raad J; Prochetto S; Fenoy E; Chorostecki U; Ariel F; Stegmayer G; Milone DH
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38855913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting RNA SHAPE scores with deep learning.
    Bliss N; Bindewald E; Shapiro BA
    RNA Biol; 2020 Sep; 17(9):1324-1330. PubMed ID: 32476596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DEBFold: Computational Identification of RNA Secondary Structures for Sequences across Structural Families Using Deep Learning.
    Yang TH
    J Chem Inf Model; 2024 May; 64(9):3756-3766. PubMed ID: 38648189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comprehensive review and assessment of computational methods for predicting RNA post-transcriptional modification sites from RNA sequences.
    Chen Z; Zhao P; Li F; Wang Y; Smith AI; Webb GI; Akutsu T; Baggag A; Bensmail H; Song J
    Brief Bioinform; 2020 Sep; 21(5):1676-1696. PubMed ID: 31714956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRMSNet: A deep learning model that uses convolution and residual multi-head self-attention block to predict RBPs for RNA sequence.
    Pan Z; Zhou S; Zou H; Liu C; Zang M; Liu T; Wang Q
    Proteins; 2023 Aug; 91(8):1032-1041. PubMed ID: 36935548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of Imaging Examination Based on Deep Learning in the Diagnosis of Viral Senile Pneumonia.
    Deng X; Ge X; Xue Q; Liu H
    Contrast Media Mol Imaging; 2022; 2022():6964283. PubMed ID: 35694707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNA3DB: A structurally-dissimilar dataset split for training and benchmarking deep learning models for RNA structure prediction.
    Szikszai M; Magnus M; Sanghi S; Kadyan S; Bouatta N; Rivas E
    J Mol Biol; 2024 Sep; 436(17):168552. PubMed ID: 38552946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DeepHE: Accurately predicting human essential genes based on deep learning.
    Zhang X; Xiao W; Xiao W
    PLoS Comput Biol; 2020 Sep; 16(9):e1008229. PubMed ID: 32936825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of RNA-protein sequence and structure binding preferences using deep convolutional and recurrent neural networks.
    Pan X; Rijnbeek P; Yan J; Shen HB
    BMC Genomics; 2018 Jul; 19(1):511. PubMed ID: 29970003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. gRNAde: A Geometric Deep Learning Pipeline for 3D RNA Inverse Design.
    Joshi CK; Liò P
    Methods Mol Biol; 2025; 2847():121-135. PubMed ID: 39312140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DeepSSPred: A Deep Learning Based Sulfenylation Site Predictor Via a Novel nSegmented Optimize Federated Feature Encoder.
    Khan ZU; Pi D
    Protein Pept Lett; 2021; 28(6):708-721. PubMed ID: 33267753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrating thermodynamic and sequence contexts improves protein-RNA binding prediction.
    Su Y; Luo Y; Zhao X; Liu Y; Peng J
    PLoS Comput Biol; 2019 Sep; 15(9):e1007283. PubMed ID: 31483777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MSFF-CDCGAN: A novel method to predict RNA secondary structure based on Generative Adversarial Network.
    Yuan S; Gong Y; Wang G; Zhang B; Liu Y; Zhang H
    Methods; 2022 Aug; 204():368-375. PubMed ID: 35490852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of LncRNA-protein Interactions Using Auto-Encoder, SE-ResNet Models and Transfer Learning.
    Huiwen J; Kai S
    Microrna; 2024; 13(2):155-165. PubMed ID: 38591194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration approach.
    Pan X; Shen HB
    BMC Bioinformatics; 2017 Feb; 18(1):136. PubMed ID: 28245811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of 8-state protein secondary structures by a novel deep learning architecture.
    Zhang B; Li J; Lü Q
    BMC Bioinformatics; 2018 Aug; 19(1):293. PubMed ID: 30075707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting RNA secondary structure via adaptive deep recurrent neural networks with energy-based filter.
    Lu W; Tang Y; Wu H; Huang H; Fu Q; Qiu J; Li H
    BMC Bioinformatics; 2019 Dec; 20(Suppl 25):684. PubMed ID: 31874602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Learning-based Identification of Brain MRI Sequences Using a Model Trained on Large Multicentric Study Cohorts.
    Mahmutoglu MA; Preetha CJ; Meredig H; Tonn JC; Weller M; Wick W; Bendszus M; Brugnara G; Vollmuth P
    Radiol Artif Intell; 2024 Jan; 6(1):e230095. PubMed ID: 38166331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ncDLRES: a novel method for non-coding RNAs family prediction based on dynamic LSTM and ResNet.
    Wang L; Zhong X; Wang S; Liu Y
    BMC Bioinformatics; 2021 Sep; 22(1):447. PubMed ID: 34544356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.