These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 393511)

  • 41. Structure of the yeast ribosomes. Proteins associated with the rRNA.
    Reyes R; Vazquez D; Ballesta JP
    Biochim Biophys Acta; 1978 Nov; 521(1):229-34. PubMed ID: 363157
    [TBL] [Abstract][Full Text] [Related]  

  • 42. RNA sequences in ribonucleoprotein fragments of the complex formed from ribosomal 23-S RNA and ribosomal protein L24 of Escherichia coli.
    Branlant C; Sri Widada J; Krol A; Ebel JP
    Eur J Biochem; 1977 Mar; 74(1):155-70. PubMed ID: 404143
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Derivatives of the yeast mitochondrial ribosomal protein MrpS28 replace ribosomal protein S15 as functional components of the Escherichia coli ribosome.
    Li Y; Huff MO; Hanic-Joyce PJ; Ellis SR
    J Mol Biol; 1993 Oct; 233(4):606-14. PubMed ID: 8411168
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparative analysis of the protein components from 5S rRNA.protein complexes of halophilic archaebacteria.
    McDougall J; Wittmann-Liebold B
    Eur J Biochem; 1994 Apr; 221(2):779-85. PubMed ID: 8174557
    [TBL] [Abstract][Full Text] [Related]  

  • 45. rRNA binding domain of yeast ribosomal protein L25. Identification of its borders and a key leucine residue.
    Rutgers CA; Rientjes JM; van 't Riet J; Raué HA
    J Mol Biol; 1991 Mar; 218(2):375-85. PubMed ID: 2010915
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Domain III of Saccharomyces cerevisiae 25 S ribosomal RNA: its role in binding of ribosomal protein L25 and 60 S subunit formation.
    van Beekvelt CA; Kooi EA; de Graaff-Vincent M; Riet J; Venema J; Raué HA
    J Mol Biol; 2000 Feb; 296(1):7-17. PubMed ID: 10656814
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Activities of B. stearothermophilus 50 S ribosomes reconstituted with prokaryotic and eukaryotic 5 S RNA.
    Wrede P; Erdmann VA
    FEBS Lett; 1973 Jul; 33(3):315-9. PubMed ID: 4580763
    [No Abstract]   [Full Text] [Related]  

  • 48. Conservation of ribosomal protein binding sites in prokaryotic 16S RNAs.
    Thurlow DL; Zimmermann RA
    Proc Natl Acad Sci U S A; 1978 Jun; 75(6):2859-63. PubMed ID: 351619
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The properties of ribosomal proteins from a moderate halophile.
    Falkenberg P; Matheson AT; Rollin CF
    Biochim Biophys Acta; 1976 Jun; 434(2):474-82. PubMed ID: 782526
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The binding site of protein L1 on 23-S ribosomal RNA of Escherichia coli. 1. Isolation and characterization.
    Sloof P; Garrett R; Krol A; Branlant C
    Eur J Biochem; 1976 Nov; 70(2):447-56. PubMed ID: 827438
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evolutionary relationship between eukaryotic 29--32 S nucleolar rRNA precursors and the prokaryotic 23 S rRNA.
    Nazar RN
    FEBS Lett; 1982 Jul; 143(2):161-2. PubMed ID: 6749546
    [No Abstract]   [Full Text] [Related]  

  • 52. Secondary structure features of ribosomal RNA species within intact ribosomal subunits and efficiency of RNA-protein interactions in thermoacidophilic (Caldariella acidophila, Bacillus acidocaldarius) and mesophilic (Escherichia coli) bacteria.
    Cammarano P; Mazzei F; Londei P; Teichner A; de Rosa M; Gambacorta A
    Biochim Biophys Acta; 1983 Aug; 740(3):300-12. PubMed ID: 6347258
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evidence that E. coli ribosomal protein S13 has two separable functional domains involved in 16S RNA recognition and protein S19 binding.
    Schwarzbauer J; Craven GR
    Nucleic Acids Res; 1985 Sep; 13(18):6767-86. PubMed ID: 3903659
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Involvement of lysine and arginine residues in the binding of yeast ribosomal protein YL3 to 5S RNA.
    Vioque A; Hernández F; Palacián E
    Mol Cell Biochem; 1987 Aug; 76(2):141-6. PubMed ID: 3118184
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Specific cleavage of ribosomal RNA caused by alpha sarcin.
    Schindler DG; Davies JE
    Nucleic Acids Res; 1977 Apr; 4(4):1097-1110. PubMed ID: 325525
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ion effects on protein-nucleic acid interactions: the disassembly of the 50-S ribosomal subunit from the halophilic bacterium, Halobacterium cutirubrum.
    Strom AR; Hasnain S; Smith N; Matheson AT; Visentin LP
    Biochim Biophys Acta; 1975 Mar; 383(3):325-37. PubMed ID: 1115803
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Iodination of Escherichia coli ribosomal protein L18 abolishes its 5 S RNA binding activity.
    Fanning TG; Traut RR
    Biochim Biophys Acta; 1981 Feb; 652(2):256-60. PubMed ID: 7011398
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Functional conservation between structurally diverse ribosomal proteins from Drosophila melanogaster and Saccharomyces cerevisiae: fly L23a can substitute for yeast L25 in ribosome assembly and function.
    Ross CL; Patel RR; Mendelson TC; Ware VC
    Nucleic Acids Res; 2007; 35(13):4503-14. PubMed ID: 17584789
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Specific ribosomal RNA recognition by a fragment of E. coli ribosomal protein S4 missing the C-terminal 36 amino acid residues.
    Changchien LM; Craven GR
    Nucleic Acids Res; 1985 Sep; 13(17):6343-60. PubMed ID: 3900930
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Characterisation of RNA fragments obtained by mild nuclease digestion of 30-S ribosomal subunits from Escherichia coli.
    Rinke J; Ross A; Brimacombe R
    Eur J Biochem; 1977 Jun; 76(1):189-96. PubMed ID: 407081
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.