These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 39351933)

  • 1. Exciting DeePMD: Learning excited-state energies, forces, and non-adiabatic couplings.
    Dupuy L; Maitra NT
    J Chem Phys; 2024 Oct; 161(13):. PubMed ID: 39351933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonadiabatic couplings from a variational excited state method based on constrained DFT.
    Ramos P; Pavanello M
    J Chem Phys; 2021 Jan; 154(1):014110. PubMed ID: 33412866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detailed balance, internal consistency, and energy conservation in fragment orbital-based surface hopping.
    Carof A; Giannini S; Blumberger J
    J Chem Phys; 2017 Dec; 147(21):214113. PubMed ID: 29221382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonadiabatic coupling vectors within linear response time-dependent density functional theory.
    Tavernelli I; Tapavicza E; Rothlisberger U
    J Chem Phys; 2009 Mar; 130(12):124107. PubMed ID: 19334808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oscillator strengths and excited-state couplings for double excitations in time-dependent density functional theory.
    Dar DB; Maitra NT
    J Chem Phys; 2023 Dec; 159(21):. PubMed ID: 38038212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increasing Efficiency of Nonadiabatic Molecular Dynamics by Hamiltonian Interpolation with Kernel Ridge Regression.
    Wu Y; Prezhdo N; Chu W
    J Phys Chem A; 2021 Oct; 125(41):9191-9200. PubMed ID: 34636570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulating the isotropic Raman spectra of O-H stretching mode in liquid H
    Shen H; Shen X; Wu Z
    Phys Chem Chem Phys; 2023 Oct; 25(41):28180-28188. PubMed ID: 37819214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ab initio adiabatic and quasidiabatic potential energy surfaces of H(+) + CO system: A study of the ground and the first three excited electronic states.
    Saheer VC; Kumar S
    J Chem Phys; 2016 Jan; 144(2):024307. PubMed ID: 26772571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupled-surface investigation of the photodissociation of NH3(A): effect of exciting the symmetric and antisymmetric stretching modes.
    Bonhommeau D; Valero R; Truhlar DG; Jasper AW
    J Chem Phys; 2009 Jun; 130(23):234303. PubMed ID: 19548723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the applicability of a wavefunction-free, energy-based procedure for generating first-order non-adiabatic couplings around conical intersections.
    Gonon B; Perveaux A; Gatti F; Lauvergnat D; Lasorne B
    J Chem Phys; 2017 Sep; 147(11):114114. PubMed ID: 28938825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonadiabatic coupling vectors for excited states within time-dependent density functional theory in the Tamm-Dancoff approximation and beyond.
    Tavernelli I; Curchod BF; Laktionov A; Rothlisberger U
    J Chem Phys; 2010 Nov; 133(19):194104. PubMed ID: 21090851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating Electronic Couplings for Excited State Charge Transfer Based on Maximum Occupation Method ΔSCF Quasi-Adiabatic States.
    Liu J; Zhang Y; Bao P; Yi Y
    J Chem Theory Comput; 2017 Feb; 13(2):843-851. PubMed ID: 28072522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronically excited water aggregates and the adiabatic band gap of water.
    Cabral do Couto P; Costa Cabral BJ
    J Chem Phys; 2007 Jan; 126(1):014509. PubMed ID: 17212502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient time-dependent density functional theory approximations for hybrid density functionals: analytical gradients and parallelization.
    Petrenko T; Kossmann S; Neese F
    J Chem Phys; 2011 Feb; 134(5):054116. PubMed ID: 21303101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep learning for UV absorption spectra with SchNarc: First steps toward transferability in chemical compound space.
    Westermayr J; Marquetand P
    J Chem Phys; 2020 Oct; 153(15):154112. PubMed ID: 33092371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DeePMD-kit v2: A software package for deep potential models.
    Zeng J; Zhang D; Lu D; Mo P; Li Z; Chen Y; Rynik M; Huang L; Li Z; Shi S; Wang Y; Ye H; Tuo P; Yang J; Ding Y; Li Y; Tisi D; Zeng Q; Bao H; Xia Y; Huang J; Muraoka K; Wang Y; Chang J; Yuan F; Bore SL; Cai C; Lin Y; Wang B; Xu J; Zhu JX; Luo C; Zhang Y; Goodall REA; Liang W; Singh AK; Yao S; Zhang J; Wentzcovitch R; Han J; Liu J; Jia W; York DM; E W; Car R; Zhang L; Wang H
    J Chem Phys; 2023 Aug; 159(5):. PubMed ID: 37526163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Permutationally Restrained Diabatization by Machine Intelligence.
    Shu Y; Varga Z; Sampaio de Oliveira-Filho AG; Truhlar DG
    J Chem Theory Comput; 2021 Feb; 17(2):1106-1116. PubMed ID: 33405927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate and Transferable Machine Learning Potential for Molecular Dynamics Simulation of Sodium Silicate Glasses.
    Bertani M; Charpentier T; Faglioni F; Pedone A
    J Chem Theory Comput; 2024 Feb; 20(3):1358-1370. PubMed ID: 38217496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analytical excited state forces for the time-dependent density-functional tight-binding method.
    Heringer D; Niehaus TA; Wanko M; Frauenheim T
    J Comput Chem; 2007 Dec; 28(16):2589-601. PubMed ID: 17568436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excited state X-ray absorption spectroscopy: Probing both electronic and structural dynamics.
    Neville SP; Averbukh V; Ruberti M; Yun R; Patchkovskii S; Chergui M; Stolow A; Schuurman MS
    J Chem Phys; 2016 Oct; 145(14):144307. PubMed ID: 27782524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.