These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 39352405)
21. Nuclear quantum dynamics in dense hydrogen. Kang D; Sun H; Dai J; Chen W; Zhao Z; Hou Y; Zeng J; Yuan J Sci Rep; 2014 Jun; 4():5484. PubMed ID: 24968754 [TBL] [Abstract][Full Text] [Related]
22. Improving Condensed-Phase Water Dynamics with Explicit Nuclear Quantum Effects: The Polarizable Q-AMOEBA Force Field. Mauger N; Plé T; Lagardère L; Huppert S; Piquemal JP J Phys Chem B; 2022 Nov; 126(43):8813-8826. PubMed ID: 36270033 [TBL] [Abstract][Full Text] [Related]
23. 2-in-1 Phase Space Sampling for Calculating the Absorption Spectrum of the Hydrated Electron. Turi L; Baranyi B; Madarász Á J Chem Theory Comput; 2024 May; 20(10):4265-4277. PubMed ID: 38727675 [TBL] [Abstract][Full Text] [Related]
24. Coarse-graining of many-body path integrals: Theory and numerical approximations. Ryu WH; Han Y; Voth GA J Chem Phys; 2019 Jun; 150(24):244103. PubMed ID: 31255057 [TBL] [Abstract][Full Text] [Related]
25. The Quest for Accurate Liquid Water Properties from First Principles. Ruiz Pestana L; Marsalek O; Markland TE; Head-Gordon T J Phys Chem Lett; 2018 Sep; 9(17):5009-5016. PubMed ID: 30118601 [TBL] [Abstract][Full Text] [Related]
26. Nuclear Quantum Effects in Liquid Water at Near Classical Computational Cost Using the Adaptive Quantum Thermal Bath. Mauger N; Plé T; Lagardère L; Bonella S; Mangaud É; Piquemal JP; Huppert S J Phys Chem Lett; 2021 Sep; 12(34):8285-8291. PubMed ID: 34427440 [TBL] [Abstract][Full Text] [Related]
27. Ab initio study of nuclear quantum effects on sub- and supercritical water. Thomsen B; Shiga M J Chem Phys; 2021 Nov; 155(19):194107. PubMed ID: 34800944 [TBL] [Abstract][Full Text] [Related]
28. Static and Dynamic Correlations in Water: Comparison of Classical Ab Initio Molecular Dynamics at Elevated Temperature with Path Integral Simulations at Ambient Temperature. Li C; Paesani F; Voth GA J Chem Theory Comput; 2022 Apr; 18(4):2124-2131. PubMed ID: 35263110 [TBL] [Abstract][Full Text] [Related]
29. Nuclear Quantum Effects on Aqueous Electron Attachment and Redox Properties. Rybkin VV; VandeVondele J J Phys Chem Lett; 2017 Apr; 8(7):1424-1428. PubMed ID: 28296416 [TBL] [Abstract][Full Text] [Related]
30. First-principles study of non-linear thermal expansion in cadmium titanate by molecular dynamics incorporating nuclear quantum effects. Kanayama K; Toyoura K J Phys Condens Matter; 2024 Aug; 36(44):. PubMed ID: 39074498 [TBL] [Abstract][Full Text] [Related]
31. Developing machine-learned potentials to simultaneously capture the dynamics of excess protons and hydroxide ions in classical and path integral simulations. Atsango AO; Morawietz T; Marsalek O; Markland TE J Chem Phys; 2023 Aug; 159(7):. PubMed ID: 37581418 [TBL] [Abstract][Full Text] [Related]
32. Modeling Temperature-Dependent Electron Thermal Diffuse Scattering via Machine-Learned Interatomic Potentials and Path-Integral Molecular Dynamics. Kim DS; Xu M; LeBeau JM Phys Rev Lett; 2024 Feb; 132(8):086301. PubMed ID: 38457736 [TBL] [Abstract][Full Text] [Related]
33. Structure and dynamics of liquid water from Villard J; Bircher MP; Rothlisberger U Chem Sci; 2024 Mar; 15(12):4434-4451. PubMed ID: 38516095 [TBL] [Abstract][Full Text] [Related]
34. Coarse-Graining of Imaginary Time Feynman Path Integrals: Inclusion of Intramolecular Interactions and Bottom-up Force-Matching. Ryu WH; Voth GA J Phys Chem A; 2022 Sep; 126(35):6004-6019. PubMed ID: 36007243 [TBL] [Abstract][Full Text] [Related]
35. Neural Network Corrections to Intermolecular Interaction Terms of a Molecular Force Field Capture Nuclear Quantum Effects in Calculations of Liquid Thermodynamic Properties. Kurnikov IV; Pereyaslavets L; Kamath G; Sakipov SN; Voronina E; Butin O; Illarionov A; Leontyev I; Nawrocki G; Darkhovskiy M; Olevanov M; Ivahnenko I; Chen Y; Lock CB; Levitt M; Kornberg RD; Fain B J Chem Theory Comput; 2024 Feb; 20(3):1347-1357. PubMed ID: 38240485 [TBL] [Abstract][Full Text] [Related]
36. Accurate molecular dynamics and nuclear quantum effects at low cost by multiple steps in real and imaginary time: Using density functional theory to accelerate wavefunction methods. Kapil V; VandeVondele J; Ceriotti M J Chem Phys; 2016 Feb; 144(5):054111. PubMed ID: 26851912 [TBL] [Abstract][Full Text] [Related]
37. Coarse graining molecular dynamics with graph neural networks. Husic BE; Charron NE; Lemm D; Wang J; Pérez A; Majewski M; Krämer A; Chen Y; Olsson S; de Fabritiis G; Noé F; Clementi C J Chem Phys; 2020 Nov; 153(19):194101. PubMed ID: 33218238 [TBL] [Abstract][Full Text] [Related]
38. Nuclear Quantum Effects in H(+) and OH(-) Diffusion along Confined Water Wires. Rossi M; Ceriotti M; Manolopoulos DE J Phys Chem Lett; 2016 Aug; 7(15):3001-7. PubMed ID: 27440483 [TBL] [Abstract][Full Text] [Related]
39. Toward High-level Machine Learning Potential for Water Based on Quantum Fragmentation and Neural Networks. Liu J; Lan J; He X J Phys Chem A; 2022 Jun; 126(24):3926-3936. PubMed ID: 35679610 [TBL] [Abstract][Full Text] [Related]
40. Coarse-Grained Many-Body Potentials of Ligand-Stabilized Nanoparticles from Machine-Learned Mean Forces. Giunta G; Campos-Villalobos G; Dijkstra M ACS Nano; 2023 Dec; 17(23):23391-23404. PubMed ID: 38011344 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]