These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 39352930)
1. Regression of postprandial cardiac hypertrophy in burmese pythons is mediated by FoxO1. Martin TG; Hunt DR; Langer SJ; Tan Y; Ebmeier CC; Leinwand LA Proc Natl Acad Sci U S A; 2024 Oct; 121(41):e2408719121. PubMed ID: 39352930 [TBL] [Abstract][Full Text] [Related]
2. A Conserved Mechanism of Cardiac Hypertrophy Regression through FoxO1. Martin TG; Hunt DR; Langer SJ; Tan Y; Ebmeier CC; Crocini C; Chung E; Leinwand LA bioRxiv; 2024 Jan; ():. PubMed ID: 38328143 [TBL] [Abstract][Full Text] [Related]
3. Reduction of blood oxygen levels enhances postprandial cardiac hypertrophy in Burmese python (Python bivittatus). Slay CE; Enok S; Hicks JW; Wang T J Exp Biol; 2014 May; 217(Pt 10):1784-9. PubMed ID: 24311803 [TBL] [Abstract][Full Text] [Related]
4. Whole transcriptome analysis of the fasting and fed Burmese python heart: insights into extreme physiological cardiac adaptation. Wall CE; Cozza S; Riquelme CA; McCombie WR; Heimiller JK; Marr TG; Leinwand LA Physiol Genomics; 2011 Jan; 43(2):69-76. PubMed ID: 21045117 [TBL] [Abstract][Full Text] [Related]
5. FoxO1 is required for physiological cardiac hypertrophy induced by exercise but not by constitutively active PI3K. Weeks KL; Tham YK; Yildiz SG; Alexander Y; Donner DG; Kiriazis H; Harmawan CA; Hsu A; Bernardo BC; Matsumoto A; DePinho RA; Abel ED; Woodcock EA; McMullen JR Am J Physiol Heart Circ Physiol; 2021 Apr; 320(4):H1470-H1485. PubMed ID: 33577435 [TBL] [Abstract][Full Text] [Related]
6. Autophagy plays an essential role in mediating regression of hypertrophy during unloading of the heart. Hariharan N; Ikeda Y; Hong C; Alcendor RR; Usui S; Gao S; Maejima Y; Sadoshima J PLoS One; 2013; 8(1):e51632. PubMed ID: 23308102 [TBL] [Abstract][Full Text] [Related]
7. Molecular regulation of reversible cardiac remodeling: lessons from species with extreme physiological adaptations. Martin TG; Leinwand LA J Exp Biol; 2024 Oct; 227(20):. PubMed ID: 39344503 [TBL] [Abstract][Full Text] [Related]
9. Fatty acids identified in the Burmese python promote beneficial cardiac growth. Riquelme CA; Magida JA; Harrison BC; Wall CE; Marr TG; Secor SM; Leinwand LA Science; 2011 Oct; 334(6055):528-31. PubMed ID: 22034436 [TBL] [Abstract][Full Text] [Related]
10. Transcriptome analysis of the response of Burmese python to digestion. Duan J; Sanggaard KW; Schauser L; Lauridsen SE; Enghild JJ; Schierup MH; Wang T Gigascience; 2017 Aug; 6(8):1-18. PubMed ID: 28873961 [TBL] [Abstract][Full Text] [Related]
11. Utility of the burmese Python as a model for studying plasticity of extreme physiological systems. Tan Y; Martin TG; Harrison BC; Leinwand LA J Muscle Res Cell Motil; 2023 Jun; 44(2):95-106. PubMed ID: 36316565 [TBL] [Abstract][Full Text] [Related]
12. The Elusive Hypertrophy of the Python Heart. Jensen B; Wang T Physiology (Bethesda); 2024 Mar; 39(2):0. PubMed ID: 38085014 [TBL] [Abstract][Full Text] [Related]
13. Effects of meal size on postprandial responses in juvenile Burmese pythons (Python molurus). Secor SM; Diamond J Am J Physiol; 1997 Mar; 272(3 Pt 2):R902-12. PubMed ID: 9087654 [TBL] [Abstract][Full Text] [Related]
14. Angiotensin IV attenuates diabetic cardiomyopathy Zhang M; Sui W; Xing Y; Cheng J; Cheng C; Xue F; Zhang J; Wang X; Zhang C; Hao P; Zhang Y Theranostics; 2021; 11(18):8624-8639. PubMed ID: 34522203 [No Abstract] [Full Text] [Related]
15. Burmese pythons exhibit a transient adaptation to nutrient overload that prevents liver damage. Magida JA; Tan Y; Wall CE; Harrison BC; Marr TG; Peter AK; Riquelme CA; Leinwand LA J Gen Physiol; 2022 Apr; 154(4):. PubMed ID: 35323838 [TBL] [Abstract][Full Text] [Related]
16. Genomic Binding Patterns of Forkhead Box Protein O1 Reveal Its Unique Role in Cardiac Hypertrophy. Pfleger J; Coleman RC; Ibetti J; Roy R; Kyriazis ID; Gao E; Drosatos K; Koch WJ Circulation; 2020 Sep; 142(9):882-898. PubMed ID: 32640834 [TBL] [Abstract][Full Text] [Related]
17. High-glucose induces cardiac myocytes apoptosis through Foxo1 /GRK2 signaling pathway. Yang M; Lin Y; Wang Y; Wang Y Biochem Biophys Res Commun; 2019 May; 513(1):154-158. PubMed ID: 30952428 [TBL] [Abstract][Full Text] [Related]
18. FoxO1 regulates myocardial glucose oxidation rates via transcriptional control of pyruvate dehydrogenase kinase 4 expression. Gopal K; Saleme B; Al Batran R; Aburasayn H; Eshreif A; Ho KL; Ma WK; Almutairi M; Eaton F; Gandhi M; Park EA; Sutendra G; Ussher JR Am J Physiol Heart Circ Physiol; 2017 Sep; 313(3):H479-H490. PubMed ID: 28687587 [TBL] [Abstract][Full Text] [Related]
19. Postprandial remodeling of the gut microbiota in Burmese pythons. Costello EK; Gordon JI; Secor SM; Knight R ISME J; 2010 Nov; 4(11):1375-85. PubMed ID: 20520652 [TBL] [Abstract][Full Text] [Related]
20. Galanin promotes autophagy and alleviates apoptosis in the hypertrophied heart through FoxO1 pathway. Martinelli I; Timotin A; Moreno-Corchado P; Marsal D; Kramar S; Loy H; Joffre C; Boal F; Tronchere H; Kunduzova O Redox Biol; 2021 Apr; 40():101866. PubMed ID: 33493902 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]