These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 39354113)
1. Random mutagenesis and disulfide bond formation improved thermostability in microbial transglutaminase. Suzuki M; Date M; Kashiwagi T; Takahashi K; Nakamura A; Tanokura M; Suzuki E; Yokoyama K Appl Microbiol Biotechnol; 2024 Oct; 108(1):478. PubMed ID: 39354113 [TBL] [Abstract][Full Text] [Related]
2. Rational design of a disulfide bridge increases the thermostability of microbial transglutaminase. Suzuki M; Date M; Kashiwagi T; Suzuki E; Yokoyama K Appl Microbiol Biotechnol; 2022 Jun; 106(12):4553-4562. PubMed ID: 35729274 [TBL] [Abstract][Full Text] [Related]
3. Effect of introducing a disulfide bridge on the thermostability of microbial transglutaminase from Streptomyces mobaraensis. Yokoyama K; Ogaya D; Utsumi H; Suzuki M; Kashiwagi T; Suzuki E; Taguchi S Appl Microbiol Biotechnol; 2021 Apr; 105(7):2737-2745. PubMed ID: 33738551 [TBL] [Abstract][Full Text] [Related]
4. Enhancing the thermostability of transglutaminase from Streptomyces mobaraensis based on the rational design of a disulfide bond. Wang H; Chen H; Li Q; Yu F; Yan Y; Liu S; Tian J; Tan J Protein Expr Purif; 2022 Aug; 195-196():106079. PubMed ID: 35272012 [TBL] [Abstract][Full Text] [Related]
5. Increased thermostability of microbial transglutaminase by combination of several hot spots evolved by random and saturation mutagenesis. Buettner K; Hertel TC; Pietzsch M Amino Acids; 2012 Feb; 42(2-3):987-96. PubMed ID: 21863232 [TBL] [Abstract][Full Text] [Related]
6. Enzymatic activity and thermoresistance of improved microbial transglutaminase variants. Böhme B; Moritz B; Wendler J; Hertel TC; Ihling C; Brandt W; Pietzsch M Amino Acids; 2020 Feb; 52(2):313-326. PubMed ID: 31350615 [TBL] [Abstract][Full Text] [Related]
7. Improvement of the activity and thermostability of microbial transglutaminase by multiple-site mutagenesis. Mu D; Lu J; Shu C; Li H; Li X; Cai J; Luo S; Yang P; Jiang S; Zheng Z Biosci Biotechnol Biochem; 2018 Jan; 82(1):106-109. PubMed ID: 29198166 [TBL] [Abstract][Full Text] [Related]
8. Screening for improved activity of a transglutaminase from Streptomyces mobaraensis created by a novel rational mutagenesis and random mutagenesis. Yokoyama K; Utsumi H; Nakamura T; Ogaya D; Shimba N; Suzuki E; Taguchi S Appl Microbiol Biotechnol; 2010 Aug; 87(6):2087-96. PubMed ID: 20521043 [TBL] [Abstract][Full Text] [Related]
9. The N-terminal peptide of the transglutaminase-activating metalloprotease inhibitor from Streptomyces mobaraensis accommodates both inhibition and glutamine cross-linking sites. Juettner NE; Schmelz S; Anderl A; Colin F; Classen M; Pfeifer F; Scrima A; Fuchsbauer HL FEBS J; 2020 Feb; 287(4):708-720. PubMed ID: 31420998 [TBL] [Abstract][Full Text] [Related]
10. Random mutagenesis of a recombinant microbial transglutaminase for the generation of thermostable and heat-sensitive variants. Marx CK; Hertel TC; Pietzsch M J Biotechnol; 2008 Sep; 136(3-4):156-62. PubMed ID: 18634837 [TBL] [Abstract][Full Text] [Related]
11. Structure of the Dispase Autolysis-inducing Protein from Streptomyces mobaraensis and Glutamine Cross-linking Sites for Transglutaminase. Fiebig D; Schmelz S; Zindel S; Ehret V; Beck J; Ebenig A; Ehret M; Fröls S; Pfeifer F; Kolmar H; Fuchsbauer HL; Scrima A J Biol Chem; 2016 Sep; 291(39):20417-26. PubMed ID: 27493205 [TBL] [Abstract][Full Text] [Related]
12. Construction, expression, purification, characterization, and structural analysis of microbial transglutaminase variants. Song X; Sheng H; Zhou Y; Yu Y; He Y; Wang Z Biotechnol Appl Biochem; 2022 Dec; 69(6):2486-2495. PubMed ID: 34894362 [TBL] [Abstract][Full Text] [Related]
13. Constitutive expression of active microbial transglutaminase in Escherichia coli and comparative characterization to a known variant. Javitt G; Ben-Barak-Zelas Z; Jerabek-Willemsen M; Fishman A BMC Biotechnol; 2017 Feb; 17(1):23. PubMed ID: 28245818 [TBL] [Abstract][Full Text] [Related]
14. Specific mutation of transglutaminase gene from Wan W; He D; Xue Z; Zhang Z J Biosci; 2017 Dec; 42(4):537-546. PubMed ID: 29229872 [TBL] [Abstract][Full Text] [Related]
15. Recombinant production of active microbial transglutaminase in E. coli by using self-cleavable zymogen with mutated propeptide. Sato R; Minamihata K; Ariyoshi R; Taniguchi H; Kamiya N Protein Expr Purif; 2020 Dec; 176():105730. PubMed ID: 32827662 [TBL] [Abstract][Full Text] [Related]
16. Efficient Production of a Thermostable Mutant of Transglutaminase by Ye J; Yang P; Zhou J; Du G; Liu S J Agric Food Chem; 2024 Feb; 72(8):4207-4216. PubMed ID: 38354706 [TBL] [Abstract][Full Text] [Related]
17. Engineering an Automaturing Transglutaminase with Enhanced Thermostability by Genetic Code Expansion with Two Codon Reassignments. Ohtake K; Mukai T; Iraha F; Takahashi M; Haruna KI; Date M; Yokoyama K; Sakamoto K ACS Synth Biol; 2018 Sep; 7(9):2170-2176. PubMed ID: 30063837 [TBL] [Abstract][Full Text] [Related]
18. Features of the transglutaminase-activating metalloprotease from Streptomyces mobaraensis DSM 40847 produced in Escherichia coli. Juettner NE; Classen M; Colin F; Hoffmann SB; Meyners C; Pfeifer F; Fuchsbauer HL J Biotechnol; 2018 Sep; 281():115-122. PubMed ID: 29981445 [TBL] [Abstract][Full Text] [Related]
19. Directed Evolution and Structural Analysis of Alkaline Pectate Lyase from the Alkaliphilic Bacterium Bacillus sp. Strain N16-5 To Improve Its Thermostability for Efficient Ramie Degumming. Zhou C; Ye J; Xue Y; Ma Y Appl Environ Microbiol; 2015 Sep; 81(17):5714-23. PubMed ID: 26070675 [TBL] [Abstract][Full Text] [Related]
20. Substrate specificity analysis of microbial transglutaminase using proteinaceous protease inhibitors as natural model substrates. Taguchi S; Nishihama KI; Igi K; Ito K; Taira H; Motoki M; Momose H J Biochem; 2000 Sep; 128(3):415-25. PubMed ID: 10965040 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]