These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 39354362)
1. Comprehensive evaluation of immunological attributes and immunotherapy responses of positive T cell function regulators in colorectal cancer. Pu K; Gao J; Feng Y; Hu J; Tang S; Yang G; Xu C BMC Gastroenterol; 2024 Oct; 24(1):339. PubMed ID: 39354362 [TBL] [Abstract][Full Text] [Related]
2. A CLRN3-Based CD8 Gong Z; Huang X; Cao Q; Wu Y; Zhang Q Biomolecules; 2024 Jul; 14(8):. PubMed ID: 39199281 [TBL] [Abstract][Full Text] [Related]
3. Development of an anoikis-related gene signature and prognostic model for predicting the tumor microenvironment and response to immunotherapy in colorectal cancer. Li C; Weng J; Yang L; Gong H; Liu Z Front Immunol; 2024; 15():1378305. PubMed ID: 38779664 [TBL] [Abstract][Full Text] [Related]
4. Machine learning-based model for CD4 Wang Z; Sun Z; Lv H; Wu W; Li H; Jiang T Sci Rep; 2024 Oct; 14(1):24426. PubMed ID: 39424871 [TBL] [Abstract][Full Text] [Related]
5. Cross-talk of four types of RNA modification writers defines tumor microenvironment and pharmacogenomic landscape in colorectal cancer. Chen H; Yao J; Bao R; Dong Y; Zhang T; Du Y; Wang G; Ni D; Xun Z; Niu X; Ye Y; Li HB Mol Cancer; 2021 Feb; 20(1):29. PubMed ID: 33557837 [TBL] [Abstract][Full Text] [Related]
6. Integrated single-cell and bulk RNA-seq analysis identifies a prognostic T-cell signature in colorectal cancer. Cui P; Wang H; Bai Z Sci Rep; 2024 Aug; 14(1):20177. PubMed ID: 39215032 [TBL] [Abstract][Full Text] [Related]
7. Exploration of bacterial lipopolysaccharide-related genes signature based on T cells for predicting prognosis in colorectal cancer. Cao L; Ba Y; Chen F; Zhang S; Zhang H Aging (Albany NY); 2024 Aug; 16(15):11606-11625. PubMed ID: 39115879 [TBL] [Abstract][Full Text] [Related]
8. Developing a machine learning-based prognosis and immunotherapeutic response signature in colorectal cancer: insights from ferroptosis, fatty acid dynamics, and the tumor microenvironment. Zhu J; Zhang J; Lou Y; Zheng Y; Zheng X; Cen W; Ye L; Zhang Q Front Immunol; 2024; 15():1416443. PubMed ID: 39076986 [TBL] [Abstract][Full Text] [Related]
9. Crosstalk Between the MSI Status and Tumor Microenvironment in Colorectal Cancer. Lin A; Zhang J; Luo P Front Immunol; 2020; 11():2039. PubMed ID: 32903444 [TBL] [Abstract][Full Text] [Related]
10. Novel prognostic alternative splicing events in colorectal Cancer: Impact on immune infiltration and therapy response. Xiao Y; Gao L; Zhao X; Zhao W; Mai L; Ma C; Han Y; Li X Int Immunopharmacol; 2024 Sep; 139():112603. PubMed ID: 39043103 [TBL] [Abstract][Full Text] [Related]
11. Predictors of response to immunotherapy in colorectal cancer. González-Montero J; Rojas CI; Burotto M Oncologist; 2024 Oct; 29(10):824-832. PubMed ID: 38920285 [TBL] [Abstract][Full Text] [Related]
12. RNA methylation-related genes INHBB and SOWAHA are associated with MSI status in colorectal cancer patients and may serve as prognostic markers for predicting immunotherapy efficacy. Yin Y; Yang S; Huang Z; Yang Z; Zhang C; He Y Carcinogenesis; 2024 May; 45(5):337-350. PubMed ID: 38400766 [TBL] [Abstract][Full Text] [Related]
13. Lymphocytic infiltration in stage II microsatellite stable colorectal tumors: A retrospective prognosis biomarker analysis. Sanz-Pamplona R; Melas M; Maoz A; Schmit SL; Rennert H; Lejbkowicz F; Greenson JK; Sanjuan X; Lopez-Zambrano M; Alonso MH; Qu C; McDonnell KJ; Idos GE; Vignali M; Emerson R; Fields P; Guinó E; Santos C; Salazar R; Robins HS; Rennert G; Gruber SB; Moreno V PLoS Med; 2020 Sep; 17(9):e1003292. PubMed ID: 32970670 [TBL] [Abstract][Full Text] [Related]
14. Integrated Profiling Identifies Shi J; Bao M; Wang W; Wu X; Li Y; Zhao C; Liu W Front Immunol; 2021; 12():722807. PubMed ID: 34646265 [TBL] [Abstract][Full Text] [Related]
15. Characterization of stem cell landscape and identification of stemness-relevant prognostic gene signature to aid immunotherapy in colorectal cancer. Zheng H; Liu H; Li H; Dou W; Wang J; Zhang J; Liu T; Wu Y; Liu Y; Wang X Stem Cell Res Ther; 2022 Jun; 13(1):244. PubMed ID: 35681225 [TBL] [Abstract][Full Text] [Related]
16. Prediction of the survival status and tumor microenvironment in colorectal cancer through genotyping analysis based on toll-like receptors. Peng H; Zhang J; Yang Z; Chen L; Chen J; Cai C Saudi J Gastroenterol; 2024 Jul; 30(4):243-251. PubMed ID: 38813725 [TBL] [Abstract][Full Text] [Related]
17. Tumor microenvironment characterization in colorectal cancer to identify prognostic and immunotherapy genes signature. Guo XW; Lei RE; Zhou QN; Zhang G; Hu BL; Liang YX BMC Cancer; 2023 Aug; 23(1):773. PubMed ID: 37596528 [TBL] [Abstract][Full Text] [Related]
18. An inflammation-related subtype classification for analyzing tumor microenvironment and clinical prognosis in colorectal cancer. Pei J; Gao Y; Wu A Front Immunol; 2024; 15():1369726. PubMed ID: 38742117 [TBL] [Abstract][Full Text] [Related]
19. Gene mutation profiling in microsatellite instability colorectal cancer and its association with the efficacy of immunotherapy: A retrospective study. Liu Y; Cui K; Ma W Cancer Med; 2024 May; 13(9):e6910. PubMed ID: 38746969 [TBL] [Abstract][Full Text] [Related]
20. Identification of cuproptosis-related subtypes, construction of a prognosis model, and tumor microenvironment landscape in gastric cancer. Wang J; Qin D; Tao Z; Wang B; Xie Y; Wang Y; Li B; Cao J; Qiao X; Zhong S; Hu X Front Immunol; 2022; 13():1056932. PubMed ID: 36479114 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]