These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 3935440)

  • 1. The pH dependence of the electron self-exchange rate of azurin from Pseudomonas aeruginosa as studied by 1H-NMR.
    Groeneveld CM; Canters GW
    Eur J Biochem; 1985 Dec; 153(3):559-64. PubMed ID: 3935440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 1H NMR studies of electron exchange rate of Pseudomonas aeruginosa azurin.
    Uğurbil K; Mitra S
    Proc Natl Acad Sci U S A; 1985 Apr; 82(7):2039-43. PubMed ID: 2984677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NMR study of structure and electron transfer mechanism of Pseudomonas aeruginosa azurin.
    Groeneveld CM; Canters GW
    J Biol Chem; 1988 Jan; 263(1):167-73. PubMed ID: 3121606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational equilibria accompanying the electron transfer between cytochrome c (P551) and azurin from Pseudomonas aeruginosa.
    Rosen P; Pecht I
    Biochemistry; 1976 Feb; 15(4):775-86. PubMed ID: 174718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics and equilibria of the electron transfer between azurin and the hexacyanoiron (II/III) couple.
    Goldberg M; Pecht I
    Biochemistry; 1976 Sep; 15(19):4197-208. PubMed ID: 822866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modification of the electron-transfer sites of Pseudomonas aeruginosa azurin by site-directed mutagenesis.
    Pascher T; Bergström J; Malmström BG; Vänngård T; Lundberg LG
    FEBS Lett; 1989 Dec; 258(2):266-8. PubMed ID: 2557238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of driving force on intramolecular electron transfer in proteins. Studies on single-site mutated azurins.
    Farver O; Skov LK; van de Kamp M; Canters GW; Pecht I
    Eur J Biochem; 1992 Dec; 210(2):399-403. PubMed ID: 1459124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. pH dependence of the reduction-oxidation reaction of azurin with cytochrome c-551: role of histidine-35 of azurin in electron transfer.
    Corin AF; Bersohn R; Cole PE
    Biochemistry; 1983 Apr; 22(8):2032-8. PubMed ID: 6303402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of pH and temperature on the structure of the active site of azurin from Pseudomonas aeruginosa.
    Adman ET; Canters GW; Hill HA; Kitchen NA
    FEBS Lett; 1982 Jul; 143(2):287-92. PubMed ID: 6811322
    [No Abstract]   [Full Text] [Related]  

  • 10. pH-dependent redox activity and fluxionality of the copper site in amicyanin from Thiobacillus yersutus as studied by 300- and 600- MHz 1H NMR.
    Lommen A; Canters GW
    J Biol Chem; 1990 Feb; 265(5):2768-74. PubMed ID: 2303425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron transfer between azurin from Alcaligenes faecalis and cytochrome c551 from Pseudomonas aeruginosa.
    Rosen P; Segal M; Pecht I
    Eur J Biochem; 1981 Nov; 120(2):339-44. PubMed ID: 6274637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-range intramolecular electron transfer in azurins.
    Farver O; Pecht I
    Proc Natl Acad Sci U S A; 1989 Sep; 86(18):6968-72. PubMed ID: 2506545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron self-exchange in azurin: calculation of the superexchange electron tunneling rate.
    Mikkelsen KV; Skov LK; Nar H; Farver O
    Proc Natl Acad Sci U S A; 1993 Jun; 90(12):5443-5. PubMed ID: 8516286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gated electron transfers and electron pathways in azurin: a NMR dynamic study at multiple fields and temperatures.
    Zhuravleva AV; Korzhnev DM; Kupce E; Arseniev AS; Billeter M; Orekhov VY
    J Mol Biol; 2004 Oct; 342(5):1599-611. PubMed ID: 15364584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron-transfer properties of Pseudomonas aeruginosa [Lys44, Glu64]azurin.
    Van Pouderoyen G; Cigna G; Rolli G; Cutruzzolà F; Malatesta F; Silvestrini MC; Brunori M; Canters GW
    Eur J Biochem; 1997 Jul; 247(1):322-31. PubMed ID: 9249043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron self-exchange in Pseudomonas cytochromes.
    Timkovich R; Cai ML; Dixon DW
    Biochem Biophys Res Commun; 1988 Feb; 150(3):1044-50. PubMed ID: 2829889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complex formation between the copper protein, azurin and the cytochrome c peroxidase of Pseudomonas aeruginosa.
    Brittain T; Greenwood C
    J Inorg Biochem; 1992 Oct; 48(1):71-7. PubMed ID: 1326600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The pH and redox-state dependence of the copper site in azurin from Pseudomonas aeruginosa as studied by EXAFS.
    Groeneveld CM; Feiters MC; Hasnain SS; van Rijn J; Reedijk J; Canters GW
    Biochim Biophys Acta; 1986 Sep; 873(2):214-27. PubMed ID: 3092861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proton NMR of the histidines of azurin from Alcaligenes faecalis: linkage of histidine-35 with redox kinetics.
    Mitra S; Bersohn R
    Proc Natl Acad Sci U S A; 1982 Nov; 79(22):6807-11. PubMed ID: 6960351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pseudomonas aeruginosa cytochrome oxidase. Product inhibition by low thermodynamic driving force.
    Blatt Y; Pecht I
    Eur J Biochem; 1986 Oct; 160(1):149-53. PubMed ID: 3021448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.