These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 39355422)

  • 1. Predicting microbe-disease association based on graph autoencoder and inductive matrix completion with multi-similarities fusion.
    Shi K; Huang K; Li L; Liu Q; Zhang Y; Zheng H
    Front Microbiol; 2024; 15():1438942. PubMed ID: 39355422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting potential microbe-disease associations with graph attention autoencoder, positive-unlabeled learning, and deep neural network.
    Peng L; Huang L; Tian G; Wu Y; Li G; Cao J; Wang P; Li Z; Duan L
    Front Microbiol; 2023; 14():1244527. PubMed ID: 37789848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting human microbe-disease associations via graph attention networks with inductive matrix completion.
    Long Y; Luo J; Zhang Y; Xia Y
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32725163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GSAMDA: a computational model for predicting potential microbe-drug associations based on graph attention network and sparse autoencoder.
    Tan Y; Zou J; Kuang L; Wang X; Zeng B; Zhang Z; Wang L
    BMC Bioinformatics; 2022 Nov; 23(1):492. PubMed ID: 36401174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MVGCNMDA: Multi-view Graph Augmentation Convolutional Network for Uncovering Disease-Related Microbes.
    Hua M; Yu S; Liu T; Yang X; Wang H
    Interdiscip Sci; 2022 Sep; 14(3):669-682. PubMed ID: 35428964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MCHMDA:Predicting Microbe-Disease Associations Based on Similarities and Low-Rank Matrix Completion.
    Yan C; Duan G; Wu FX; Pan Y; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(2):611-620. PubMed ID: 31295117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of microbe-drug associations based on a modified graph attention variational autoencoder and random forest.
    Wang B; Ma F; Du X; Zhang G; Li J
    Front Microbiol; 2024; 15():1394302. PubMed ID: 38881658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MNNMDA: Predicting human microbe-disease association via a method to minimize matrix nuclear norm.
    Liu H; Bing P; Zhang M; Tian G; Ma J; Li H; Bao M; He K; He J; He B; Yang J
    Comput Struct Biotechnol J; 2023; 21():1414-1423. PubMed ID: 36824227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. M
    Wang S; Liu JX; Li F; Wang J; Gao YL
    IEEE J Biomed Health Inform; 2024 Oct; 28(10):6259-6267. PubMed ID: 39012741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of Microbe-Disease Associations by Graph Regularized Non-Negative Matrix Factorization.
    Liu Y; Wang SL; Zhang JF
    J Comput Biol; 2018 Aug; ():. PubMed ID: 30106318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SAELGMDA: Identifying human microbe-disease associations based on sparse autoencoder and LightGBM.
    Wang F; Yang H; Wu Y; Peng L; Li X
    Front Microbiol; 2023; 14():1207209. PubMed ID: 37415823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A computational model for potential microbe-disease association detection based on improved graph convolutional networks and multi-channel autoencoders.
    Zhang C; Zhang Z; Zhang F; Zeng B; Liu X; Wang L
    Front Microbiol; 2024; 15():1435408. PubMed ID: 39144226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying disease-related microbes based on multi-scale variational graph autoencoder embedding Wasserstein distance.
    Zhu H; Hao H; Yu L
    BMC Biol; 2023 Dec; 21(1):294. PubMed ID: 38115088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting potential microbe-disease associations based on dual branch graph convolutional network.
    Chen J; Zhu Y; Yuan Q
    J Cell Mol Med; 2024 Aug; 28(15):e18571. PubMed ID: 39086148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MADGAN:A microbe-disease association prediction model based on generative adversarial networks.
    Hu W; Yang X; Wang L; Zhu X
    Front Microbiol; 2023; 14():1159076. PubMed ID: 37032881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. WMGHMDA: a novel weighted meta-graph-based model for predicting human microbe-disease association on heterogeneous information network.
    Long Y; Luo J
    BMC Bioinformatics; 2019 Nov; 20(1):541. PubMed ID: 31675979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graph neural network and multi-data heterogeneous networks for microbe-disease prediction.
    Gong H; You X; Jin M; Meng Y; Zhang H; Yang S; Xu J
    Front Microbiol; 2022; 13():1077111. PubMed ID: 36620040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human Microbe-Disease Association Prediction With Graph Regularized Non-Negative Matrix Factorization.
    He BS; Peng LH; Li Z
    Front Microbiol; 2018; 9():2560. PubMed ID: 30443240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying microbe-disease association based on graph convolutional attention network: Case study of liver cirrhosis and epilepsy.
    Shi K; Li L; Wang Z; Chen H; Chen Z; Fang S
    Front Neurosci; 2022; 16():1124315. PubMed ID: 36741060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting Microbe-Disease Associations Based on a Linear Neighborhood Label Propagation Method with Multi-order Similarity Fusion Learning.
    Chen R; Xie G; Lin Z; Gu G; Yu Y; Yu J; Liu Z
    Interdiscip Sci; 2024 Jun; 16(2):345-360. PubMed ID: 38436840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.