These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 39356794)
1. Liu J; Liu X; Chen X; Zhou J; Xue J; Zhao H; Wang C; Liu F; Li L ACS Appl Mater Interfaces; 2024 Oct; ():. PubMed ID: 39356794 [TBL] [Abstract][Full Text] [Related]
2. In Situ Forming Gel Polymer Electrolyte for High Energy-Density Lithium Metal Batteries. Xue JX; Liu FQ; Xiang TQ; Jia SX; Zhou JJ; Li L Small; 2024 Jan; 20(4):e2307553. PubMed ID: 37715063 [TBL] [Abstract][Full Text] [Related]
3. In Situ Formed Gel Polymer Electrolytes Enable Stable Solid Electrolyte Interface for High-Performance Lithium Metal Batteries. Hao Q; Yan J; Gao Y; Chen F; Chen X; Qi Y; Li N ACS Appl Mater Interfaces; 2024 Aug; 16(34):44689-44696. PubMed ID: 39137323 [TBL] [Abstract][Full Text] [Related]
4. In Situ Polymerized Quasi-Solid Electrolytes Compounded with Ionic Liquid Empowering Long-Life Cycling of 4.45 V Lithium-Metal Battery. Ma S; Zhang D; Tang Z; Li W; Zhang Y; Zhang Y; Ji K; Chen M ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38600661 [TBL] [Abstract][Full Text] [Related]
5. Stable Cycling of High-Voltage Lithium-Metal Batteries Enabled by High-Concentration FEC-Based Electrolyte. Wang W; Zhang J; Yang Q; Wang S; Wang W; Li B ACS Appl Mater Interfaces; 2020 May; 12(20):22901-22909. PubMed ID: 32348668 [TBL] [Abstract][Full Text] [Related]
6. In Situ Polymerized Flame Retardant Gel Electrolyte for High-Performance and Safety-Enhanced Lithium Metal Batteries. Liu F; Lan T; Chen K; Wang Q; Huang Z; Shi C; Zhang S; Li S; Wang M; Hong B; Zhang Z; Li J; Lai Y ACS Appl Mater Interfaces; 2023 May; 15(19):23136-23145. PubMed ID: 37141507 [TBL] [Abstract][Full Text] [Related]
7. Composite Lithium Protective Layer Formed In Situ for Stable Lithium Metal Batteries. Zhang Y; Sun C ACS Appl Mater Interfaces; 2021 Mar; 13(10):12099-12105. PubMed ID: 33653027 [TBL] [Abstract][Full Text] [Related]
8. Self-Healing Polymer Electrolyte for Dendrite-Free Li Metal Batteries with Ultra-High-Voltage Ni-Rich Layered Cathodes. Li Z; Fu J; Zheng S; Li D; Guo X Small; 2022 Apr; 18(17):e2200891. PubMed ID: 35304969 [TBL] [Abstract][Full Text] [Related]
9. In Situ Gel Polymer Electrolyte with Inhibited Lithium Dendrite Growth and Enhanced Interfacial Stability for Lithium-Metal Batteries. Wei J; Yue H; Shi Z; Li Z; Li X; Yin Y; Yang S ACS Appl Mater Interfaces; 2021 Jul; 13(27):32486-32494. PubMed ID: 34227378 [TBL] [Abstract][Full Text] [Related]
10. Transference Number Reinforced-Based Gel Copolymer Electrolyte for Dendrite-Free Lithium Metal Batteries. Liu Q; Tan J; Liu Z; Hu X; Yu J; Wang X; Wu J; Cai B; Wang Q; Fu Y; Liu H; Li B ACS Appl Mater Interfaces; 2022 May; ():. PubMed ID: 35638839 [TBL] [Abstract][Full Text] [Related]
11. Durable and Adjustable Interfacial Engineering of Polymeric Electrolytes for Both Stable Ni-Rich Cathodes and High-Energy Metal Anodes. Chen Y; Cui Y; Wang S; Xiao Y; Niu J; Huang J; Wang F; Chen S Adv Mater; 2023 May; 35(18):e2300982. PubMed ID: 36808778 [TBL] [Abstract][Full Text] [Related]
12. Gel Polymer Electrolyte with High Li Wang Y; Fu L; Shi L; Wang Z; Zhu J; Zhao Y; Yuan S ACS Appl Mater Interfaces; 2019 Feb; 11(5):5168-5175. PubMed ID: 30648379 [TBL] [Abstract][Full Text] [Related]
13. Synergy of an In Situ-Polymerized Electrolyte and a Li Zhang X; Gao G; Wang W; Wang J; Wang L; Liu T ACS Appl Mater Interfaces; 2022 Oct; ():. PubMed ID: 36287550 [TBL] [Abstract][Full Text] [Related]
14. Constructing the Polymer Molecules to Regulate the Electrode/Electrolyte Interface to Enhance Lithium-Metal Battery Performance. Chen H; Xie YX; Dong LJ; Peng H; Lin MW; Sun ML; Liu SS; Ma JB; Huang L; Sun SG ChemSusChem; 2024 May; 17(9):e202301710. PubMed ID: 38407568 [TBL] [Abstract][Full Text] [Related]
15. 12.6 μm-Thick Asymmetric Composite Electrolyte with Superior Interfacial Stability for Solid-State Lithium-Metal Batteries. Zhang Z; Gou J; Cui K; Zhang X; Yao Y; Wang S; Wang H Nanomicro Lett; 2024 Apr; 16(1):181. PubMed ID: 38668771 [TBL] [Abstract][Full Text] [Related]
16. A Polymer-Reinforced SEI Layer Induced by a Cyclic Carbonate-Based Polymer Electrolyte Boosting 4.45 V LiCoO Hu R; Qiu H; Zhang H; Wang P; Du X; Ma J; Wu T; Lu C; Zhou X; Cui G Small; 2020 Apr; 16(13):e1907163. PubMed ID: 32133769 [TBL] [Abstract][Full Text] [Related]
17. Enabling Scalable Polymer Electrolyte with Dual-Reinforced Stable Interface for 4.5 V Lithium-Metal Batteries. Qi S; Li M; Gao Y; Zhang W; Liu S; Zhao J; Du L Adv Mater; 2023 Nov; 35(45):e2304951. PubMed ID: 37467170 [TBL] [Abstract][Full Text] [Related]
18. Reactive Polymer as Artificial Solid Electrolyte Interface for Stable Lithium Metal Batteries. Naren T; Kuang GC; Jiang R; Qing P; Yang H; Lin J; Chen Y; Wei W; Ji X; Chen L Angew Chem Int Ed Engl; 2023 Jun; 62(26):e202305287. PubMed ID: 37118881 [TBL] [Abstract][Full Text] [Related]
19. Bidirectional Interphase Modulation of Phosphate Electrolyte Enables Intrinsic Safety and Superior Stability for High-Voltage Lithium-Metal Batteries. Guo Q; Luo R; Tang Z; Li X; Feng X; Ding Z; Gao B; Zhang X; Huo K; Zheng Y ACS Nano; 2023 Dec; 17(23):24227-24241. PubMed ID: 37992278 [TBL] [Abstract][Full Text] [Related]
20. Ameliorating Phosphonic-Based Nonflammable Electrolytes Towards Safe and Stable Lithium Metal Batteries. Fu S; Xie X; Huangyang X; Yang L; Zeng X; Ma Q; Wu X; Xiao M; Wu Y Molecules; 2023 May; 28(10):. PubMed ID: 37241847 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]