These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 39358411)
1. Differences in Mu rhythm when seeing grasping/motor actions in a real context versus on screens. Andreu-Sánchez C; Martín-Pascual MÁ; Gruart A; Delgado-García JM Sci Rep; 2024 Oct; 14(1):22921. PubMed ID: 39358411 [TBL] [Abstract][Full Text] [Related]
2. Conflict between gesture representations extinguishes μ rhythm desynchronization during manipulable object perception: An EEG study. Wamain Y; Sahaï A; Decroix J; Coello Y; Kalénine S Biol Psychol; 2018 Feb; 132():202-211. PubMed ID: 29292234 [TBL] [Abstract][Full Text] [Related]
3. Simultaneous scalp recorded EEG and local field potentials from monkey ventral premotor cortex during action observation and execution reveals the contribution of mirror and motor neurons to the mu-rhythm. Bimbi M; Festante F; Coudé G; Vanderwert RE; Fox NA; Ferrari PF Neuroimage; 2018 Jul; 175():22-31. PubMed ID: 29571717 [TBL] [Abstract][Full Text] [Related]
4. Mu rhythm modulation during observation of an object-directed grasp. Muthukumaraswamy SD; Johnson BW; McNair NA Brain Res Cogn Brain Res; 2004 Apr; 19(2):195-201. PubMed ID: 15019715 [TBL] [Abstract][Full Text] [Related]
5. Changes in rolandic mu rhythm during observation of a precision grip. Muthukumaraswamy SD; Johnson BW Psychophysiology; 2004 Jan; 41(1):152-6. PubMed ID: 14693010 [TBL] [Abstract][Full Text] [Related]
6. EEG μ rhythm in virtual reality reveals that motor coding of visual objects in peripersonal space is task dependent. Wamain Y; Gabrielli F; Coello Y Cortex; 2016 Jan; 74():20-30. PubMed ID: 26606301 [TBL] [Abstract][Full Text] [Related]
7. Embodying Others in Immersive Virtual Reality: Electro-Cortical Signatures of Monitoring the Errors in the Actions of an Avatar Seen from a First-Person Perspective. Pavone EF; Tieri G; Rizza G; Tidoni E; Grisoni L; Aglioti SM J Neurosci; 2016 Jan; 36(2):268-79. PubMed ID: 26758821 [TBL] [Abstract][Full Text] [Related]
8. Mu-rhythm changes during the planning of motor and motor imagery actions. Llanos C; Rodriguez M; Rodriguez-Sabate C; Morales I; Sabate M Neuropsychologia; 2013 May; 51(6):1019-26. PubMed ID: 23462240 [TBL] [Abstract][Full Text] [Related]
9. Modulation of event-related desynchronization during kinematic and kinetic hand movements. Nakayashiki K; Saeki M; Takata Y; Hayashi Y; Kondo T J Neuroeng Rehabil; 2014 May; 11():90. PubMed ID: 24886610 [TBL] [Abstract][Full Text] [Related]
10. Observed manipulation of novel tools leads to mu rhythm suppression over sensory-motor cortices. Rüther NN; Brown EC; Klepp A; Bellebaum C Behav Brain Res; 2014 Mar; 261():328-35. PubMed ID: 24393742 [TBL] [Abstract][Full Text] [Related]
11. Mu rhythm desynchronization is specific to action execution and observation: Evidence from time-frequency and connectivity analysis. Debnath R; Salo VC; Buzzell GA; Yoo KH; Fox NA Neuroimage; 2019 Jan; 184():496-507. PubMed ID: 30248457 [TBL] [Abstract][Full Text] [Related]
12. Muscle-selective disinhibition of corticomotor representations using a motor imagery-based brain-computer interface. Takemi M; Maeda T; Masakado Y; Siebner HR; Ushiba J Neuroimage; 2018 Dec; 183():597-605. PubMed ID: 30172003 [TBL] [Abstract][Full Text] [Related]
13. Crossmodal Classification of Mu Rhythm Activity during Action Observation and Execution Suggests Specificity to Somatosensory Features of Actions. Coll MP; Press C; Hobson H; Catmur C; Bird G J Neurosci; 2017 Jun; 37(24):5936-5947. PubMed ID: 28559380 [TBL] [Abstract][Full Text] [Related]
14. Modulation of mu rhythm desynchronization during motor imagery by transcranial direct current stimulation. Matsumoto J; Fujiwara T; Takahashi O; Liu M; Kimura A; Ushiba J J Neuroeng Rehabil; 2010 Jun; 7():27. PubMed ID: 20540721 [TBL] [Abstract][Full Text] [Related]
16. Mirror activity in the human brain while observing hand movements: a comparison between EEG desynchronization in the mu-range and previous fMRI results. Perry A; Bentin S Brain Res; 2009 Jul; 1282():126-32. PubMed ID: 19500557 [TBL] [Abstract][Full Text] [Related]
17. Motor imagery activates primary sensorimotor area in humans. Pfurtscheller G; Neuper C Neurosci Lett; 1997 Dec; 239(2-3):65-8. PubMed ID: 9469657 [TBL] [Abstract][Full Text] [Related]
18. Human EEG reveals distinct neural correlates of power and precision grasping types. Iturrate I; Chavarriaga R; Pereira M; Zhang H; Corbet T; Leeb R; Millán JDR Neuroimage; 2018 Nov; 181():635-644. PubMed ID: 30056196 [TBL] [Abstract][Full Text] [Related]
19. Effects of active and observational experience on EEG activity during early childhood. Bryant LJ; Cuevas K Psychophysiology; 2019 Jul; 56(7):e13360. PubMed ID: 30835864 [TBL] [Abstract][Full Text] [Related]
20. Infants' somatotopic neural responses to seeing human actions: I've got you under my skin. Saby JN; Meltzoff AN; Marshall PJ PLoS One; 2013; 8(10):e77905. PubMed ID: 24205023 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]