These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 39359630)
1. Endophytic bacteria with allelopathic potential regulate gene expression and metabolite production in host Wang Y; Chen P; Lin Q; Zuo L; Li L Front Plant Sci; 2024; 15():1435440. PubMed ID: 39359630 [TBL] [Abstract][Full Text] [Related]
2. Whole-Genome Sequencing of Two Potentially Allelopathic Strains of Wang Y; Chen P; Lin Q; Zuo L; Li L Microorganisms; 2024 Jun; 12(6):. PubMed ID: 38930629 [TBL] [Abstract][Full Text] [Related]
3. [Diversity of bacteria and allelopathic potential of their metabolites in differently aged Zhang YQ; Huang R; Zuo LZ; Chen P; Li L Ying Yong Sheng Tai Xue Bao; 2020 Jul; 31(7):2185-2194. PubMed ID: 32715680 [TBL] [Abstract][Full Text] [Related]
4. Is allelochemical synthesis in Xu Z; Zuo L; Zhang Y; Huang R; Li L Front Plant Sci; 2022; 13():1022984. PubMed ID: 36407626 [TBL] [Abstract][Full Text] [Related]
5. Multi-omics analyses reveal the mechanisms underlying the responses of Casuarina equisetifolia ssp. incana to seawater atomization and encroachment stress. Zhang S; Wang G; Yu W; Wei L; Gao C; Li D; Guo L; Yang J; Jian S; Liu N BMC Plant Biol; 2024 Sep; 24(1):854. PubMed ID: 39266948 [TBL] [Abstract][Full Text] [Related]
6. Root exudates and chemotactic strains mediate bacterial community assembly in the rhizosphere soil of Lin Q; Li M; Wang Y; Xu Z; Li L Front Plant Sci; 2022; 13():988442. PubMed ID: 36212345 [TBL] [Abstract][Full Text] [Related]
7. De novo genome assembly of the stress tolerant forest species Casuarina equisetifolia provides insight into secondary growth. Ye G; Zhang H; Chen B; Nie S; Liu H; Gao W; Wang H; Gao Y; Gu L Plant J; 2019 Feb; 97(4):779-794. PubMed ID: 30427081 [TBL] [Abstract][Full Text] [Related]
8. Transcriptome and metabolome analysis reveals key genes and secondary metabolites of Casuarina equisetifolia ssp. incana in response to drought stress. Zhang S; He C; Wei L; Jian S; Liu N BMC Plant Biol; 2023 Apr; 23(1):200. PubMed ID: 37069496 [TBL] [Abstract][Full Text] [Related]
9. Structural variability and niche differentiation of the rhizosphere and endosphere fungal microbiome of Casuarina equisetifolia at different ages. Huang R; Chen P; Wang X; Li H; Zuo L; Zhang Y; Li L Braz J Microbiol; 2020 Dec; 51(4):1873-1884. PubMed ID: 32661898 [TBL] [Abstract][Full Text] [Related]
10. Pathogenic and Comparative Genomic Analysis of Wang X; Li C; Huang S; Gao H; Li Y; Chen X; Huang L; Luo J; Zhang L; Zhou X Plant Dis; 2024 Sep; 108(9):2809-2819. PubMed ID: 38687570 [No Abstract] [Full Text] [Related]
11. Genome-wide identification of WRKY transcription factors in Casuarina equisetifolia and the function analysis of CeqWRKY11 in response to NaCl/NaHCO Zhao X; Qi G; Liu J; Chen K; Miao X; Hussain J; Liu S; Ren H BMC Plant Biol; 2024 May; 24(1):376. PubMed ID: 38714947 [TBL] [Abstract][Full Text] [Related]
12. Symbiotic Performance of Diverse Frankia Strains on Salt-Stressed Casuarina glauca and Casuarina equisetifolia Plants. Ngom M; Gray K; Diagne N; Oshone R; Fardoux J; Gherbi H; Hocher V; Svistoonoff S; Laplaze L; Tisa LS; Sy MO; Champion A Front Plant Sci; 2016; 7():1331. PubMed ID: 27630656 [TBL] [Abstract][Full Text] [Related]
13. Dataset of allelopathic effects of Ahmed TA; Elezz AA; Al-Sayed NH Data Brief; 2019 Dec; 27():104770. PubMed ID: 31763416 [TBL] [Abstract][Full Text] [Related]
14. Chromosome-scale de novo genome assembly and annotation of three representative Casuarina species: C. equisetifolia, C. glauca, and C. cunninghamiana. Zhang Y; Wei Y; Meng J; Wang Y; Nie S; Zhang Z; Wang H; Yang Y; Gao Y; Wu J; Li T; Liu X; Zhang H; Gu L Plant J; 2023 Jun; 114(6):1490-1505. PubMed ID: 36971060 [TBL] [Abstract][Full Text] [Related]
15. Differential Expression Pattern of Pathogenicity-Related Genes of Zhou X; Wang Y; Li C; Xu Y; Su X; Yang T; Zhang X Phytopathology; 2021 Nov; 111(11):1918-1926. PubMed ID: 33822646 [No Abstract] [Full Text] [Related]
16. Allelopathic bacteria and their impact on higher plants. Barazani O; Friedman J Crit Rev Microbiol; 2001; 27(1):41-55. PubMed ID: 11305367 [TBL] [Abstract][Full Text] [Related]
17. [Effects of exogenous microorganisms on seedling growth and soil microbial community of Bai Y; Zhou LT; Zhang C; Luo Y; Zhao YL; Lin WX; Wu ZY Ying Yong Sheng Tai Xue Bao; 2021 Aug; 32(8):2939-2948. PubMed ID: 34664468 [TBL] [Abstract][Full Text] [Related]
18. Seed-borne endophytic Bacillus amyloliquefaciens RWL-1 produces gibberellins and regulates endogenous phytohormones of Oryza sativa. Shahzad R; Waqas M; Khan AL; Asaf S; Khan MA; Kang SM; Yun BW; Lee IJ Plant Physiol Biochem; 2016 Sep; 106():236-43. PubMed ID: 27182958 [TBL] [Abstract][Full Text] [Related]
19. Transcriptome analysis reveals that barnyard grass exudates increase the allelopathic potential of allelopathic and non-allelopathic rice (Oryza sativa) accessions. Zhang Q; Zheng XY; Lin SX; Gu CZ; Li L; Li JY; Fang CX; He HB Rice (N Y); 2019 May; 12(1):30. PubMed ID: 31062105 [TBL] [Abstract][Full Text] [Related]
20. Phytochemical analysis and evaluation of its antioxidant, antimicrobial, and cytotoxic activities for different extracts of Casuarina equisetifolia. Abdallah WE; Shams KA; El-Shamy AM BMC Complement Med Ther; 2024 Mar; 24(1):128. PubMed ID: 38509538 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]