These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 39359910)

  • 1. Two-scale concurrent simulations for crack propagation using FEM-DEM bridging coupling.
    Voisin-Leprince M; Garcia-Suarez J; Anciaux G; Molinari JF
    Comput Part Mech; 2024; 11(5):2235-2243. PubMed ID: 39359910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation of crack induced nonlinear elasticity using the combined finite-discrete element method.
    Gao K; Rougier E; Guyer RA; Lei Z; Johnson PA
    Ultrasonics; 2019 Sep; 98():51-61. PubMed ID: 31200274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational Coupled Method for Multiscale and Phase Analysis.
    Tak M; Park D; Park T
    J Eng Mater Technol; 2013 Apr; 135(2):210131-2101311. PubMed ID: 23918471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Simplified Calibration Procedure for DEM Simulations of Granular Material Flow.
    Hajivand Dastgerdi R; Malinowska AA
    Materials (Basel); 2024 Sep; 17(19):. PubMed ID: 39410404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling of Longitudinal Elastic Wave Propagation in a Steel Rod Using the Discrete Element Method.
    Knak M; Nitka M; Wojtczak E; Rucka M
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compliant contact versus rigid contact: A comparison in the context of granular dynamics.
    Pazouki A; Kwarta M; Williams K; Likos W; Serban R; Jayakumar P; Negrut D
    Phys Rev E; 2017 Oct; 96(4-1):042905. PubMed ID: 29347540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical investigation of crack propagation regimes in snow fracture experiments.
    Bobillier G; Bergfeld B; Dual J; Gaume J; van Herwijnen A; Schweizer J
    Granul Matter; 2024; 26(3):58. PubMed ID: 38659625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aggregation and clogging phenomena of rigid microparticles in microfluidics: Comparison of a discrete element method (DEM) and CFD-DEM coupling method.
    Shahzad K; Aeken WV; Mottaghi M; Kamyab VK; Kuhn S
    Microfluid Nanofluidics; 2018; 22(9):104. PubMed ID: 30393471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DECM: A Discrete Element for Multiscale Modeling of Composite Materials Using the Cell Method.
    Ferretti E
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32079086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A computational framework for crack propagation in spatially heterogeneous materials.
    Lewandowski K; Kaczmarczyk Ł; Athanasiadis I; Marshall JF; Pearce CJ
    Philos Trans A Math Phys Eng Sci; 2021 Aug; 379(2203):20200291. PubMed ID: 34148414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Velocity mode transition of dynamic crack propagation in hyperviscoelastic materials: A continuum model study.
    Kubo A; Umeno Y
    Sci Rep; 2017 Feb; 7():42305. PubMed ID: 28186205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Research on ultrasonic bone cutting mechanism based on extended finite element method.
    Wang L; Liu Y; Wang S; Li J; Sun Y; Wang J; Zou Q
    Biomech Model Mechanobiol; 2024 Jun; 23(3):861-877. PubMed ID: 38261094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Improved Approach to Direct Simulation of an Actual Almen Shot Peening Intensity Test with a Large Number of Shots.
    Wang C; Li W; Jiang J; Chao X; Zeng W; Xu J; Yang J
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33187269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinematic modelling and experimental testing of a particle-jamming soft robot based on a DEM-FEM coupling method.
    Xu F; Ma K; Jiang Q; Jiang GP
    Bioinspir Biomim; 2023 Jun; 18(4):. PubMed ID: 37285858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative modelling of crack propagation in elastic-plastic materials using the meshfree local radial basis point interpolation method and eXtended finite-element method.
    Li Y; Xu N; Tu J; Mei G
    R Soc Open Sci; 2019 Nov; 6(11):190543. PubMed ID: 31827821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of Cortical Bone Fracture Patterns Under Compression Loading Using Finite Element-Discrete Element Numerical Modeling Approach and Destructive Testing.
    Hudyma N; Lisjak A; Tatone BS; Garner HW; Wight J; Mandavalli AS; Olutola IA; Pujalte GGA
    Cureus; 2022 Sep; 14(9):e29596. PubMed ID: 36321046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discrete element method modelling of elastic wave propagation in a meso-scale model of concrete.
    Knak M; Nitka M; Rucka M
    Ultrasonics; 2024 Jul; 141():107336. PubMed ID: 38714061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of moisture-induced cracks in wooden cross sections using finite element simulations.
    Brandstätter F; Autengruber M; Lukacevic M; Füssl J
    Wood Sci Technol; 2023; 57(3):671-701. PubMed ID: 37201163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Material heterogeneity, microstructure, and microcracks demonstrate differential influence on crack initiation and propagation in cortical bone.
    Demirtas A; Ural A
    Biomech Model Mechanobiol; 2018 Oct; 17(5):1415-1428. PubMed ID: 29808355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A mesoscopic bridging scale method for fluids and coupling dissipative particle dynamics with continuum finite element method.
    Kojic M; Filipovic N; Tsuda A
    Comput Methods Appl Mech Eng; 2013 Jan; 197(6-8):821-833. PubMed ID: 23814322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.