These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 39360977)

  • 1. BatchFLEX: feature-level equalization of X-batch.
    Davis JT; Obermayer AN; Soupir AC; Hesterberg RS; Duong T; Yang CY; Dao KP; Manley BJ; Grass GD; Avram D; Rodriguez PC; Fridley BL; Yu X; Teng M; Wang X; Shaw TI
    Bioinformatics; 2024 Oct; 40(10):. PubMed ID: 39360977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BatchServer: A Web Server for Batch Effect Evaluation, Visualization, and Correction.
    Zhu T; Sun R; Zhang F; Chen GB; Yi X; Ruan G; Yuan C; Zhou S; Guo T
    J Proteome Res; 2021 Jan; 20(1):1079-1086. PubMed ID: 33338382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shiny-Seq: advanced guided transcriptome analysis.
    Sundararajan Z; Knoll R; Hombach P; Becker M; Schultze JL; Ulas T
    BMC Res Notes; 2019 Jul; 12(1):432. PubMed ID: 31319888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The START App: a web-based RNAseq analysis and visualization resource.
    Nelson JW; Sklenar J; Barnes AP; Minnier J
    Bioinformatics; 2017 Feb; 33(3):447-449. PubMed ID: 28171615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. UpSetR: an R package for the visualization of intersecting sets and their properties.
    Conway JR; Lex A; Gehlenborg N
    Bioinformatics; 2017 Sep; 33(18):2938-2940. PubMed ID: 28645171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BatchQC: interactive software for evaluating sample and batch effects in genomic data.
    Manimaran S; Selby HM; Okrah K; Ruberman C; Leek JT; Quackenbush J; Haibe-Kains B; Bravo HC; Johnson WE
    Bioinformatics; 2016 Dec; 32(24):3836-3838. PubMed ID: 27540268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. V-SVA: an R Shiny application for detecting and annotating hidden sources of variation in single-cell RNA-seq data.
    Lawlor N; Marquez EJ; Lee D; Ucar D
    Bioinformatics; 2020 Jun; 36(11):3582-3584. PubMed ID: 32119082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MultiBaC: an R package to remove batch effects in multi-omic experiments.
    Ugidos M; Nueda MJ; Prats-Montalbán JM; Ferrer A; Conesa A; Tarazona S
    Bioinformatics; 2022 Apr; 38(9):2657-2658. PubMed ID: 35238331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blind estimation and correction of microarray batch effect.
    Varma S
    PLoS One; 2020; 15(4):e0231446. PubMed ID: 32271844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. OralExplorer: a web server for exploring the mechanisms of oral inflammatory diseases.
    Lin W; Yang H; Lin J; Yang X; Liao Z; Zheng Y; Luo P; Liu C
    J Transl Med; 2024 Mar; 22(1):282. PubMed ID: 38491529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. pyComBat, a Python tool for batch effects correction in high-throughput molecular data using empirical Bayes methods.
    Behdenna A; Colange M; Haziza J; Gema A; Appé G; Azencott CA; Nordor A
    BMC Bioinformatics; 2023 Dec; 24(1):459. PubMed ID: 38057718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BERMAD: batch effect removal for single-cell RNA-seq data using a multi-layer adaptation autoencoder with dual-channel framework.
    Zhan X; Yin Y; Zhang H
    Bioinformatics; 2024 Mar; 40(3):. PubMed ID: 38439545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Higher-order correction of persistent batch effects in correlation networks.
    Micheletti S; Schlauch D; Quackenbush J; Ben Guebila M
    Bioinformatics; 2024 Sep; 40(9):. PubMed ID: 39226186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detecting hidden batch factors through data-adaptive adjustment for biological effects.
    Yi H; Raman AT; Zhang H; Allen GI; Liu Z
    Bioinformatics; 2018 Apr; 34(7):1141-1147. PubMed ID: 29617963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Smccnet 2.0: a comprehensive tool for multi-omics network inference with shiny visualization.
    Liu W; Vu T; R Konigsberg I; A Pratte K; Zhuang Y; Kechris KJ
    BMC Bioinformatics; 2024 Aug; 25(1):276. PubMed ID: 39179997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TCC-GUI: a Shiny-based application for differential expression analysis of RNA-Seq count data.
    Su W; Sun J; Shimizu K; Kadota K
    BMC Res Notes; 2019 Mar; 12(1):133. PubMed ID: 30867032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. iDINGO-integrative differential network analysis in genomics with Shiny application.
    Class CA; Ha MJ; Baladandayuthapani V; Do KA
    Bioinformatics; 2018 Apr; 34(7):1243-1245. PubMed ID: 29194470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. iSMNN: batch effect correction for single-cell RNA-seq data via iterative supervised mutual nearest neighbor refinement.
    Yang Y; Li G; Xie Y; Wang L; Lagler TM; Yang Y; Liu J; Qian L; Li Y
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33839756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DEVEA: an interactive shiny application for Differential Expression analysis, data Visualization and Enrichment Analysis of transcriptomics data.
    Riquelme-Perez M; Perez-Sanz F; Deleuze JF; Escartin C; Bonnet E; Brohard S
    F1000Res; 2022; 11():711. PubMed ID: 36999088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. mvlearnR and Shiny App for multiview learning.
    Palzer EF; Safo SE
    Bioinform Adv; 2024; 4(1):vbae005. PubMed ID: 38304121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.