These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 39362142)
1. Partial oxidation of Rh/Ru nanoparticles within carbon nanofibers for high-efficiency hydrazine oxidation-assisted hydrogen generation. Xu J; Zhong M; Yan S; Chen X; Li W; Xu M; Wang C; Lu X J Colloid Interface Sci; 2025 Feb; 679(Pt A):171-180. PubMed ID: 39362142 [TBL] [Abstract][Full Text] [Related]
2. Palladium cobalt alloy encapsulated in carbon nanofibers as bifunctional electrocatalyst for high-efficiency overall hydrazine splitting. Ao Y; Chen S; Wang C; Lu X J Colloid Interface Sci; 2021 Nov; 601():495-504. PubMed ID: 34090027 [TBL] [Abstract][Full Text] [Related]
3. Bifunctional zeolitic imidazolate framework-67 coupling with CoNiSe electrocatalyst for efficient hydrazine-assisted water splitting. Liu W; Shi T; Feng Z J Colloid Interface Sci; 2023 Jan; 630(Pt B):888-899. PubMed ID: 36356454 [TBL] [Abstract][Full Text] [Related]
4. Regulating Mo-based alloy-oxide active interfaces for efficient alkaline hydrogen evolution assisted by hydrazine oxidation. Zhang M; Zhou B; Gong Y; Shang M; Xiao W; Wang J; Dai C; Zhang H; Wu Z; Wang L J Colloid Interface Sci; 2024 Aug; 667():73-81. PubMed ID: 38621333 [TBL] [Abstract][Full Text] [Related]
5. Ruthenium Nanoclusters and Single Atoms on α-MoC/N-Doped Carbon Achieves Low-Input/Input-Free Hydrogen Evolution via Decoupled/Coupled Hydrazine Oxidation. Li Y; Niu S; Liu P; Pan R; Zhang H; Ahmad N; Shi Y; Liang X; Cheng M; Chen S; Du J; Hu M; Wang D; Chen W; Li Y Angew Chem Int Ed Engl; 2024 Jul; 63(30):e202316755. PubMed ID: 38739420 [TBL] [Abstract][Full Text] [Related]
6. Cooperative Ni(Co)-Ru-P Sites Activate Dehydrogenation for Hydrazine Oxidation Assisting Self-powered H Hu Y; Chao T; Li Y; Liu P; Zhao T; Yu G; Chen C; Liang X; Jin H; Niu S; Chen W; Wang D; Li Y Angew Chem Int Ed Engl; 2023 Aug; 62(35):e202308800. PubMed ID: 37428114 [TBL] [Abstract][Full Text] [Related]
7. Highly enhanced hydrazine oxidation on bifunctional Ni tailored by alloying for energy-efficient hydrogen production. Zhao Y; Sun Y; Li H; Zeng S; Li R; Yao Q; Chen H; Zheng Y; Qu K J Colloid Interface Sci; 2023 Dec; 652(Pt B):1848-1856. PubMed ID: 37683412 [TBL] [Abstract][Full Text] [Related]
9. Superhydrophilic Ni-based Multicomponent Nanorod-Confined-Nanoflake Array Electrode Achieves Waste-Battery-Driven Hydrogen Evolution and Hydrazine Oxidation. Li Y; Li J; Qian Q; Jin X; Liu Y; Li Z; Zhu Y; Guo Y; Zhang G Small; 2021 May; 17(19):e2008148. PubMed ID: 33768679 [TBL] [Abstract][Full Text] [Related]
10. Robust and Highly Efficient Electrochemical Hydrogen Production from Hydrazine-Assisted Water Electrolysis Enabled by the Metal-Support Interaction of Ru/C Composites. Wang W; Qian Q; Li Y; Zhu Y; Feng Y; Cheng M; Zhang H; Zhang Y; Zhang G ACS Appl Mater Interfaces; 2023 Jun; 15(22):26852-26862. PubMed ID: 37225429 [TBL] [Abstract][Full Text] [Related]
11. Artificial Heterointerfaces Achieve Delicate Reaction Kinetics towards Hydrogen Evolution and Hydrazine Oxidation Catalysis. Qian Q; Zhang J; Li J; Li Y; Jin X; Zhu Y; Liu Y; Li Z; El-Harairy A; Xiao C; Zhang G; Xie Y Angew Chem Int Ed Engl; 2021 Mar; 60(11):5984-5993. PubMed ID: 33306263 [TBL] [Abstract][Full Text] [Related]
12. Bifunctional nanoporous Ni-Zn electrocatalysts with super-aerophobic surface for high-performance hydrazine-assisted hydrogen production. Zhang H; Feng Z; Wang L; Li D; Xing P Nanotechnology; 2020 Sep; 31(36):365701. PubMed ID: 32413873 [TBL] [Abstract][Full Text] [Related]
13. Laser-Regulated Iridium-Diffused Nitrogen-Carbon Sites for Enhanced Hydrazine-Assisted Alkaline Seawater Splitting and Zinc-Hydrazine Batteries. Moon CJ; Maheskumar V; Min A; Kumar A; Lee S; Senthil RA; Ubaidullah M; Choi MY Small; 2024 Oct; ():e2408569. PubMed ID: 39478677 [TBL] [Abstract][Full Text] [Related]
14. Regulation of hydrogen binding energy via oxygen vacancy enables an efficient trifunctional Rh-Rh Gao J; Yu W; Liu J; Qin L; Cheng H; Cui X; Jiang L J Colloid Interface Sci; 2024 Jun; 664():766-778. PubMed ID: 38492378 [TBL] [Abstract][Full Text] [Related]
16. Taking Advantage of Potential Coincidence Region: Insights into Gas Production Behavior in Advanced Self-Activated Hydrazine-Assisted Alkaline Seawater Electrolysis. Wang HY; Zhai S; Wang H; Yan F; Ren JT; Wang L; Sun M; Yuan ZY ACS Nano; 2024 Jul; ():. PubMed ID: 39012051 [TBL] [Abstract][Full Text] [Related]
17. Bifunctional single-atomic Mn sites for energy-efficient hydrogen production. Peng X; Hou J; Mi Y; Sun J; Qi G; Qin Y; Zhang S; Qiu Y; Luo J; Liu X Nanoscale; 2021 Mar; 13(9):4767-4773. PubMed ID: 33650623 [TBL] [Abstract][Full Text] [Related]
18. Ultrathin NiSe Nanosheets on Ni Foam for Efficient and Durable Hydrazine-Assisted Electrolytic Hydrogen Production. Li Y; Zhao Y; Li FM; Dang Z; Gao P ACS Appl Mater Interfaces; 2021 Jul; 13(29):34457-34467. PubMed ID: 34261314 [TBL] [Abstract][Full Text] [Related]
19. 0.2 V Electrolysis Voltage-Driven Alkaline Hydrogen Production with Nitrogen-Doped Carbon Nanobowl-Supported Ultrafine Rh Nanoparticles of 1.4 nm. Jia N; Liu Y; Wang L; Chen P; Chen X; An Z; Chen Y ACS Appl Mater Interfaces; 2019 Sep; 11(38):35039-35049. PubMed ID: 31466444 [TBL] [Abstract][Full Text] [Related]
20. Taking Advantage of Potential Coincidence Region: Advanced Self-Activated/Propelled Hydrazine-Assisted Alkaline Seawater Electrolysis and Zn-Hydrazine Battery. Wang HY; Wang L; Ren JT; Tian W; Sun M; Feng Y; Yuan ZY ACS Nano; 2023 Jun; 17(11):10965-10975. PubMed ID: 37265321 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]