These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 39362846)

  • 41. One-Step Solvothermal Synthesis of Ni Nanoparticle Catalysts Embedded in ZrO
    Meiliefiana M; Nakayashiki T; Yamamoto E; Hayashi K; Ohtani M; Kobiro K
    Nanoscale Res Lett; 2022 Apr; 17(1):47. PubMed ID: 35435525
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Approaches to the design of efficient and stable catalysts for biofuel reforming into syngas: doping the mesoporous MgAl
    Sadykov VA; Eremeev NF; Sadovskaya E; Fedorova JE; Arapova MV; Bobrova LN; Ishchenko AV; Krieger TA; Melgunov MS; Glazneva TS; Kaichev VV; Rogov VA
    Dalton Trans; 2023 Jun; 52(25):8756-8769. PubMed ID: 37317694
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Highly Active Ni-Ru Bimetallic Catalyst Integrated with MFI Zeolite-Loaded Cerium Zirconium Oxide for Dry Reforming of Methane.
    Miao C; Chen S; Shang K; Liang L; Ouyang J
    ACS Appl Mater Interfaces; 2022 Oct; 14(42):47616-47632. PubMed ID: 36223106
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Future Paradigm of 3D Printed Ni-Based Metal Organic Framework Catalysts for Dry Methane Reforming: Techno-economic and Environmental Analyses.
    Ong JL; Loy ACM; Teng SY; How BS
    ACS Omega; 2022 May; 7(18):15369-15384. PubMed ID: 35571820
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Support Induced Effects on the Ir Nanoparticles Activity, Selectivity and Stability Performance under CO
    Nikolaraki E; Goula G; Panagiotopoulou P; Taylor MJ; Kousi K; Kyriakou G; Kondarides DI; Lambert RM; Yentekakis IV
    Nanomaterials (Basel); 2021 Oct; 11(11):. PubMed ID: 34835645
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Coking- and Sintering-Resistant Ni Nanocatalysts Confined by Active BN Edges for Methane Dry Reforming.
    Zhang X; Deng J; Lan T; Shen Y; Qu W; Zhong Q; Zhang D
    ACS Appl Mater Interfaces; 2022 Jun; 14(22):25439-25447. PubMed ID: 35604327
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Biogas Conversion to Syngas Using Advanced Ni-Promoted Pyrochlore Catalysts: Effect of the CH
    le Saché E; Alvarez Moreno A; Reina TR
    Front Chem; 2021; 9():672419. PubMed ID: 33937208
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Solid-State Surface-Anchoring Strategy to Prepare Anti-Sintering Supported Metal Cluster Catalysts.
    Liu Q; Shu Y; Ma Z; Zhang R; Wang P; Zhang P
    Inorg Chem; 2024 Jul; 63(29):13707-13713. PubMed ID: 38973588
    [TBL] [Abstract][Full Text] [Related]  

  • 49. CO
    Alabi WO
    Environ Pollut; 2018 Nov; 242(Pt B):1566-1576. PubMed ID: 30166203
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Improving Anti-Coking Properties of Ni/Al
    Shi Y; Wang S; Li Y; Yang F; Yu H; Chu Y; Li T; Yin H
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591379
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Metal Carbide as A Light-Harvesting and Anticoking Catalysis Support for Dry Reforming of Methane.
    Takeda K; Yamaguchi A; Cho Y; Anjaneyulu O; Fujita T; Abe H; Miyauchi M
    Glob Chall; 2020 Jan; 4(1):1900067. PubMed ID: 31956431
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Roles of different Ni-Si interactions in methane combustion under oscillating temperature conditions.
    Lin J; Wu S; Tang C; Chen X; Zheng Y
    J Colloid Interface Sci; 2024 Aug; 668():512-524. PubMed ID: 38691961
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Recent Progresses in the Design and Fabrication of Highly Efficient Ni-Based Catalysts With Advanced Catalytic Activity and Enhanced Anti-coke Performance Toward CO
    Wu X; Xu L; Chen M; Lv C; Wen X; Cui Y; Wu CE; Yang B; Miao Z; Hu X
    Front Chem; 2020; 8():581923. PubMed ID: 33195071
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Co-Exsolution of Ni-Based Alloy Catalysts for the Valorization of Carbon Dioxide and Methane.
    Najimu M; Jo S; Gilliard-AbdulAziz KL
    Acc Chem Res; 2023 Nov; 56(22):3132-3141. PubMed ID: 37939260
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Profitable Fischer Tropsch realization
    Alhassan M; Jalil AA; Bahari MB; Owgi AHK; Nabgan W; Hassan NS; Tran TV; Abdulrasheed AA; Hamid MYS; Ikram M; Firmansyah ML; Holilah H; Sholejah NA
    RSC Adv; 2023 Jan; 13(3):1711-1726. PubMed ID: 36712622
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Partial Oxidation of Methane to Syngas Over Nickel-Based Catalysts: Influence of Support Type, Addition of Rhodium, and Preparation Method.
    Alvarez-Galvan C; Melian M; Ruiz-Matas L; Eslava JL; Navarro RM; Ahmadi M; Roldan Cuenya B; Fierro JLG
    Front Chem; 2019; 7():104. PubMed ID: 30931293
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Highly Efficient Solar-Driven Dry Reforming of Methane on a Rh/LaNiO
    Yao Y; Li B; Gao X; Yang Y; Yu J; Lei J; Li Q; Meng X; Chen L; Xu D
    Adv Mater; 2023 Sep; 35(39):e2303654. PubMed ID: 37314337
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Solution combustion synthesis of Ni/La
    Ahmad YH; Mohamed AT; Kumar A; Al-Qaradawi SY
    RSC Adv; 2021 Oct; 11(53):33734-33743. PubMed ID: 35497540
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nanostructured Nickel Aluminate as a Key Intermediate for the Production of Highly Dispersed and Stable Nickel Nanoparticles Supported within Mesoporous Alumina for Dry Reforming of Methane.
    Karam L; Reboul J; El Hassan N; Nelayah J; Massiani P
    Molecules; 2019 Nov; 24(22):. PubMed ID: 31739418
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dry Reforming of Methane over 5%Ni/Ce
    Smal E; Bespalko Y; Arapova M; Fedorova V; Valeev K; Eremeev N; Sadovskaya E; Krieger T; Glazneva T; Sadykov V; Simonov M
    Int J Mol Sci; 2023 Jun; 24(11):. PubMed ID: 37298629
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.