These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 39364573)
1. Proton-Coupled Electron Transfer in Photoelectrochemical Alcohol Oxidation Enhanced by Nickel-based Cocatalysts. Gao B; Mu X; Feng J; Huang H; Liu J; Liu W; Zou Z; Li Z Angew Chem Int Ed Engl; 2024 Oct; ():e202413298. PubMed ID: 39364573 [TBL] [Abstract][Full Text] [Related]
2. MOF Material-Derived Bimetallic Sulfide Co Guo C; Huo Y; Zhang Q; Wan K; Yang G; Liu Z; Peng F Nanomaterials (Basel); 2023 Aug; 13(16):. PubMed ID: 37630905 [TBL] [Abstract][Full Text] [Related]
3. Efficient Catalytic Conversion of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid over Ruthenium Cluster-Embedded Ni(OH) Chai X; Jiang K; Wang J; Ren Z; Liu X; Chen L; Zhuang X; Wang T ChemSusChem; 2022 Aug; 15(16):e202200863. PubMed ID: 35716074 [TBL] [Abstract][Full Text] [Related]
4. High-valence metal sites induced by heterostructure engineering for promoting 5-hydroxymethylfurfural electrooxidation and hydrogen generation. Shang N; Li W; Wu Q; Li H; Wang H; Wang C; Bai G J Colloid Interface Sci; 2024 Apr; 659():621-628. PubMed ID: 38198939 [TBL] [Abstract][Full Text] [Related]
5. Coupling Natural Halloysite Nanotubes and Bimetallic Pt-Au Alloy Nanoparticles for Highly Efficient and Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid. Zhong X; Yuan P; Wei Y; Liu D; Losic D; Li M ACS Appl Mater Interfaces; 2022 Jan; 14(3):3949-3960. PubMed ID: 35015494 [TBL] [Abstract][Full Text] [Related]
6. Strengthening the Stability of the Reconstructed NiOOH Phase for 5-Hydroxymethylfurfural Oxidation. Huang Y; Pang X; Cui J; Huang Z; Wang G; Zhao H; Bai H; Fan W Inorg Chem; 2023 Apr; 62(16):6499-6509. PubMed ID: 37036090 [TBL] [Abstract][Full Text] [Related]
7. In Situ Growth of Ultrathin Ni(OH) Zhang J; Gong W; Yin H; Wang D; Zhang Y; Zhang H; Wang G; Zhao H ChemSusChem; 2021 Jul; 14(14):2935-2942. PubMed ID: 34013575 [TBL] [Abstract][Full Text] [Related]
8. Electrochemical Oxidation of HMF via Hydrogen Atom Transfer and Hydride Transfer on NiOOH and the Impact of NiOOH Composition. Bender MT; Choi KS ChemSusChem; 2022 Jul; 15(13):e202200675. PubMed ID: 35522224 [TBL] [Abstract][Full Text] [Related]
9. Electronic Modulation Induced by Ni-VN Heterojunction Reinforces Electrolytic Hydrogen Evolution Coupled with Biomass Upgrade. Jia W; Liu B; Gong R; Bian X; Du S; Ma S; Song Z; Ren Z; Chen Z Small; 2023 Sep; 19(39):e2302025. PubMed ID: 37231554 [TBL] [Abstract][Full Text] [Related]
10. Complete oxidation of hydroxymethylfurfural to furandicarboxylic acid by aryl-alcohol oxidase. Serrano A; Calviño E; Carro J; Sánchez-Ruiz MI; Cañada FJ; Martínez AT Biotechnol Biofuels; 2019; 12():217. PubMed ID: 31528205 [TBL] [Abstract][Full Text] [Related]
11. Au-Based Bimetallic Catalysts for Aerobic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid under Base-Free Reaction Conditions. Su J; Liu Z; Tan Y; Xiao Y; Zhan N; Ding Y Molecules; 2024 Jun; 29(12):. PubMed ID: 38930789 [TBL] [Abstract][Full Text] [Related]
12. Nickel-phytic acid hybrid for highly efficient electrocatalytic upgrading of HMF. Liu S; Yuan X; Huang X; Huang Y; Sun C; Qian K; Zhang W Front Chem; 2023; 11():1199921. PubMed ID: 37273512 [TBL] [Abstract][Full Text] [Related]
13. Bifunctional MoNi4/nickel foam electro-catalyst for ultra-efficient oxidation of high-concentration 5-hydroxymethylfurfural and HER. Liu H; Xia J; Liu X; Hu Y; Shakouri M; Wu H; Zhu M; Guo Y; Chen J; Wang H; Wang Y ChemSusChem; 2024 Oct; ():e202401516. PubMed ID: 39429049 [TBL] [Abstract][Full Text] [Related]
14. Sulfidation of nickel foam with enhanced electrocatalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid. Wang W; Kong F; Zhang Z; Yang L; Wang M Dalton Trans; 2021 Aug; 50(31):10922-10927. PubMed ID: 34313283 [TBL] [Abstract][Full Text] [Related]
15. A Facile Synthesis Route to AuPd Alloys for the Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid. Peng Y; Qiu B; Ding S; Hu M; Zhang Y; Jiao Y; Fan X; Parlett CMA Chempluschem; 2024 Jan; 89(1):e202300545. PubMed ID: 37884457 [TBL] [Abstract][Full Text] [Related]
16. Combined biomass valorization and hydrogen production in a photoelectrochemical cell. Cha HG; Choi KS Nat Chem; 2015 Apr; 7(4):328-33. PubMed ID: 25803471 [TBL] [Abstract][Full Text] [Related]
17. Production of the 2,5-Furandicarboxylic Acid Bio-Monomer From 5-Hydroxymethylfurfural Over a Molybdenum-Vanadium Oxide Catalyst. Liu J; Wen S; Wang F; Zhu X; Zeng Z; Yin D Front Chem; 2022; 10():853112. PubMed ID: 35372283 [TBL] [Abstract][Full Text] [Related]
18. Highly Self-Healing Co Dai H; Zhou P; Yang S; Yang L; Bai H; Dai C; Xu G; Fan W Inorg Chem; 2024 Sep; 63(35):16541-16553. PubMed ID: 39166921 [TBL] [Abstract][Full Text] [Related]
19. Hierarchical Nickel-Cobalt-Based Transition Metal Oxide Catalysts for the Electrochemical Conversion of Biomass into Valuable Chemicals. Gao L; Bao Y; Gan S; Sun Z; Song Z; Han D; Li F; Niu L ChemSusChem; 2018 Aug; 11(15):2547-2553. PubMed ID: 29885212 [TBL] [Abstract][Full Text] [Related]
20. Phenol Oxidation by a Nickel(III)-Fluoride Complex: Exploring the Influence of the Proton Accepting Ligand in PCET Oxidation. Mondal P; McDonald AR Chemistry; 2020 Aug; 26(44):10083-10089. PubMed ID: 32567726 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]