These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 39365567)
1. [Heavy metal tolerance in crop plants: an in silico comprehensive analysis of Metal- tolerance gene family in barley]. Grabsztunowicz M; Stolarska E; Kumar Tanwar U; Arasimowicz-Jelonek M; Sobieszczuk-Nowicka E Postepy Biochem; 2024 Sep; 70(3):358-370. PubMed ID: 39365567 [TBL] [Abstract][Full Text] [Related]
2. Metal tolerance gene family in barley: an in silico comprehensive analysis. Tanwar UK; Stolarska E; Rudy E; Paluch-Lubawa E; Grabsztunowicz M; Arasimowicz-Jelonek M; Sobieszczuk-Nowicka E J Appl Genet; 2023 May; 64(2):197-215. PubMed ID: 36586056 [TBL] [Abstract][Full Text] [Related]
3. Vacuolar Transporters for Cadmium and Arsenic in Plants and their Applications in Phytoremediation and Crop Development. Zhang J; Martinoia E; Lee Y Plant Cell Physiol; 2018 Jul; 59(7):1317-1325. PubMed ID: 29361141 [TBL] [Abstract][Full Text] [Related]
4. Molecular characterization and expression dynamics of MTP genes under various spatio-temporal stages and metal stress conditions in rice. Ram H; Kaur A; Gandass N; Singh S; Deshmukh R; Sonah H; Sharma TR PLoS One; 2019; 14(5):e0217360. PubMed ID: 31136613 [TBL] [Abstract][Full Text] [Related]
5. Biotechnological strategies for enhancing heavy metal tolerance in neglected and underutilized legume crops: A comprehensive review. Rai KK; Pandey N; Meena RP; Rai SP Ecotoxicol Environ Saf; 2021 Jan; 208():111750. PubMed ID: 33396075 [TBL] [Abstract][Full Text] [Related]
6. Implications of metal accumulation mechanisms to phytoremediation. Memon AR; Schröder P Environ Sci Pollut Res Int; 2009 Mar; 16(2):162-75. PubMed ID: 19067014 [TBL] [Abstract][Full Text] [Related]
7. Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: Mechanisms and future prospects. Etesami H Ecotoxicol Environ Saf; 2018 Jan; 147():175-191. PubMed ID: 28843189 [TBL] [Abstract][Full Text] [Related]
8. Two metal-tolerance proteins, MTP1 and MTP4, are involved in Zn homeostasis and Cd sequestration in cucumber cells. Migocka M; Kosieradzka A; Papierniak A; Maciaszczyk-Dziubinska E; Posyniak E; Garbiec A; Filleur S J Exp Bot; 2015 Feb; 66(3):1001-15. PubMed ID: 25422498 [TBL] [Abstract][Full Text] [Related]
9. Genome-wide identification and expression analysis of metal tolerance protein (MTP) gene family in soybean (Glycine max) under heavy metal stress. El-Sappah AH; Abbas M; Rather SA; Wani SH; Soaud N; Noor Z; Qiulan H; Eldomiaty AS; Mir RR; Li J Mol Biol Rep; 2023 Apr; 50(4):2975-2990. PubMed ID: 36653731 [TBL] [Abstract][Full Text] [Related]
10. Quantitative Trait Loci and Inter-Organ Partitioning for Essential Metal and Toxic Analogue Accumulation in Barley. Reuscher S; Kolter A; Hoffmann A; Pillen K; Krämer U PLoS One; 2016; 11(4):e0153392. PubMed ID: 27078500 [TBL] [Abstract][Full Text] [Related]
11. Genome-wide identification of metal tolerance protein genes in Quercus dentata and their roles in response to various heavy metal stresses. Jiang M; Wang M; Zhang X; Zhang Z; Sha J; Wan J; Wei L; Wang R; Wang W; Wang W; Hu Z; Leng P; He X Ecotoxicol Environ Saf; 2024 Sep; 283():116942. PubMed ID: 39216217 [TBL] [Abstract][Full Text] [Related]
12. [Structure and function of heavy metal transporter P(1B)-ATPase in plant: a review]. Zhang Y; Zhang Y; Sun T; Chai T Sheng Wu Gong Cheng Xue Bao; 2010 Jun; 26(6):715-25. PubMed ID: 20815250 [TBL] [Abstract][Full Text] [Related]
13. Transcriptome analysis reveals candidate genes involved in multiple heavy metal tolerance in hyperaccumulator Sedum alfredii. Ge J; Tao J; Zhao J; Wu Z; Zhang H; Gao Y; Tian S; Xie R; Xu S; Lu L Ecotoxicol Environ Saf; 2022 Aug; 241():113795. PubMed ID: 35753274 [TBL] [Abstract][Full Text] [Related]
14. Genome-Wide Identification of Metal Tolerance Protein Genes in Gao Y; Yang F; Liu J; Xie W; Zhang L; Chen Z; Peng Z; Ou Y; Yao Y Int J Mol Sci; 2020 Feb; 21(5):. PubMed ID: 32121430 [TBL] [Abstract][Full Text] [Related]
15. Genome-wide identification of sweet orange (Citrus sinensis) metal tolerance proteins and analysis of their expression patterns under zinc, manganese, copper, and cadmium toxicity. Fu XZ; Tong YH; Zhou X; Ling LL; Chun CP; Cao L; Zeng M; Peng LZ Gene; 2017 Sep; 629():1-8. PubMed ID: 28760553 [TBL] [Abstract][Full Text] [Related]
16. [Heavy metal-transport proteins in plants: a review]. Jin F; Wang C; Lin HJ; Shen YO; Zhang ZM; Zhao MJ; Pan GT Ying Yong Sheng Tai Xue Bao; 2010 Jul; 21(7):1875-82. PubMed ID: 20879550 [TBL] [Abstract][Full Text] [Related]
17. Investigating heavy-metal hyperaccumulation using Thlaspi caerulescens as a model system. Milner MJ; Kochian LV Ann Bot; 2008 Jul; 102(1):3-13. PubMed ID: 18440996 [TBL] [Abstract][Full Text] [Related]
18. Molecular evolution and functional diversification of metal tolerance protein families in cereals plants and function of maize MTP protein. Zhao C; Cui X; Yu X; Ning X; Yu H; Li J; Yang B; Pan Y; Jiang L Int J Biol Macromol; 2024 Aug; 274(Pt 1):133071. PubMed ID: 38871096 [TBL] [Abstract][Full Text] [Related]
19. Natural Molecular Mechanisms of Plant Hyperaccumulation and Hypertolerance towards Heavy Metals. Skuza L; Szućko-Kociuba I; Filip E; Bożek I Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012598 [TBL] [Abstract][Full Text] [Related]
20. [Heavy metal absorption, transportation and accumulation mechanisms in hyperaccumulator Thlaspi caerulescens]. Liu G; Chai T; Sun T Sheng Wu Gong Cheng Xue Bao; 2010 May; 26(5):561-8. PubMed ID: 20684297 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]