These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 39365863)
1. Site-specific sulfations regulate the physicochemical properties of papillomavirus-heparan sulfate interactions for entry. Bano F; Soria-Martinez L; van Bodegraven D; Throsteinsson K; Brown AM; Fels I; Snyder NL; Bally M; Schelhaas M Sci Adv; 2024 Oct; 10(40):eado8540. PubMed ID: 39365863 [TBL] [Abstract][Full Text] [Related]
2. Interaction of human papillomavirus type 16 particles with heparan sulfate and syndecan-1 molecules in the keratinocyte extracellular matrix plays an active role in infection. Surviladze Z; Sterkand RT; Ozbun MA J Gen Virol; 2015 Aug; 96(8):2232-2241. PubMed ID: 26289843 [TBL] [Abstract][Full Text] [Related]
3. The degree of polymerization and sulfation patterns in heparan sulfate are critical determinants of cytomegalovirus entry into host cells. Mitra D; Hasan MH; Bates JT; Bierdeman MA; Ederer DR; Parmar RC; Fassero LA; Liang Q; Qiu H; Tiwari V; Zhang F; Linhardt RJ; Sharp JS; Wang L; Tandon R PLoS Pathog; 2021 Aug; 17(8):e1009803. PubMed ID: 34352038 [TBL] [Abstract][Full Text] [Related]
4. Multiple heparan sulfate binding site engagements are required for the infectious entry of human papillomavirus type 16. Richards KF; Bienkowska-Haba M; Dasgupta J; Chen XS; Sapp M J Virol; 2013 Nov; 87(21):11426-37. PubMed ID: 23966387 [TBL] [Abstract][Full Text] [Related]
5. Structural basis of oligosaccharide receptor recognition by human papillomavirus. Dasgupta J; Bienkowska-Haba M; Ortega ME; Patel HD; Bodevin S; Spillmann D; Bishop B; Sapp M; Chen XS J Biol Chem; 2011 Jan; 286(4):2617-24. PubMed ID: 21115492 [TBL] [Abstract][Full Text] [Related]
6. Extracellular Conformational Changes in the Capsid of Human Papillomaviruses Contribute to Asynchronous Uptake into Host Cells. Becker M; Greune L; Schmidt MA; Schelhaas M J Virol; 2018 Jun; 92(11):. PubMed ID: 29593032 [TBL] [Abstract][Full Text] [Related]
7. The role of heparan sulfate maturation in cancer: A focus on the 3O-sulfation and the enigmatic 3O-sulfotransferases (HS3STs). Gulberti S; Mao X; Bui C; Fournel-Gigleux S Semin Cancer Biol; 2020 May; 62():68-85. PubMed ID: 31711992 [TBL] [Abstract][Full Text] [Related]
8. Chondroitin Sulfate Proteoglycans Are De Facto Cellular Receptors for Human Papillomavirus 16 under High Serum Conditions. Fons NR; Kines RC; Thompson CD; Day PM; Lowy DR; Schiller JT J Virol; 2022 Apr; 96(7):e0185721. PubMed ID: 35285688 [TBL] [Abstract][Full Text] [Related]
9. Cooperation of binding sites at the hydrophilic domain of cell-surface sulfatase Sulf1 allows for dynamic interaction of the enzyme with its substrate heparan sulfate. Milz F; Harder A; Neuhaus P; Breitkreuz-Korff O; Walhorn V; Lübke T; Anselmetti D; Dierks T Biochim Biophys Acta; 2013 Nov; 1830(11):5287-98. PubMed ID: 23891937 [TBL] [Abstract][Full Text] [Related]
10. Epitope mapping by a Wnt-blocking antibody: evidence of the Wnt binding domain in heparan sulfate. Gao W; Xu Y; Liu J; Ho M Sci Rep; 2016 May; 6():26245. PubMed ID: 27185050 [TBL] [Abstract][Full Text] [Related]
11. Binding of human papillomavirus type 16 to heparan sulfate is inhibited by mucosal antibodies from patients with low-grade squamous intraepithelial lesions but not from cervical cancer patients. Lopez TV; Cancio C; Cruz-Talonia F; Ruiz B; Sapp M; Rocha-Zavaleta L FEMS Immunol Med Microbiol; 2008 Nov; 54(2):167-76. PubMed ID: 19049640 [TBL] [Abstract][Full Text] [Related]
12. The 3-O sulfation of heparan sulfate proteoglycans contributes to the cellular internalization of tau aggregates. Ferreira A; Royaux I; Liu J; Wang Z; Su G; Moechars D; Callewaert N; De Muynck L BMC Mol Cell Biol; 2022 Dec; 23(1):61. PubMed ID: 36564747 [TBL] [Abstract][Full Text] [Related]
13. Epidermal Growth Factor Receptor and Abl2 Kinase Regulate Distinct Steps of Human Papillomavirus 16 Endocytosis. Bannach C; Brinkert P; Kühling L; Greune L; Schmidt MA; Schelhaas M J Virol; 2020 May; 94(11):. PubMed ID: 32188731 [TBL] [Abstract][Full Text] [Related]
14. Usage of heparan sulfate, integrins, and FAK in HPV16 infection. Abban CY; Meneses PI Virology; 2010 Jul; 403(1):1-16. PubMed ID: 20441998 [TBL] [Abstract][Full Text] [Related]
15. Genome-Wide Screening Uncovers the Significance of N-Sulfation of Heparan Sulfate as a Host Cell Factor for Chikungunya Virus Infection. Tanaka A; Tumkosit U; Nakamura S; Motooka D; Kishishita N; Priengprom T; Sa-Ngasang A; Kinoshita T; Takeda N; Maeda Y J Virol; 2017 Jul; 91(13):. PubMed ID: 28404855 [TBL] [Abstract][Full Text] [Related]
16. Target cell cyclophilins facilitate human papillomavirus type 16 infection. Bienkowska-Haba M; Patel HD; Sapp M PLoS Pathog; 2009 Jul; 5(7):e1000524. PubMed ID: 19629175 [TBL] [Abstract][Full Text] [Related]
17. Overexpression of different isoforms of glucosaminyl N-deacetylase/N-sulfotransferase results in distinct heparan sulfate N-sulfation patterns. Pikas DS; Eriksson I; Kjellén L Biochemistry; 2000 Apr; 39(15):4552-8. PubMed ID: 10758005 [TBL] [Abstract][Full Text] [Related]
18. The binding properties of minimal oligosaccharides reveal a common heparan sulfate/dermatan sulfate-binding site in hepatocyte growth factor/scatter factor that can accommodate a wide variety of sulfation patterns. Deakin JA; Blaum BS; Gallagher JT; Uhrín D; Lyon M J Biol Chem; 2009 Mar; 284(10):6311-21. PubMed ID: 19114710 [TBL] [Abstract][Full Text] [Related]
19. The evolving field of human papillomavirus receptor research: a review of binding and entry. Raff AB; Woodham AW; Raff LM; Skeate JG; Yan L; Da Silva DM; Schelhaas M; Kast WM J Virol; 2013 Jun; 87(11):6062-72. PubMed ID: 23536685 [TBL] [Abstract][Full Text] [Related]
20. The "in and out" of glucosamine 6-O-sulfation: the 6th sense of heparan sulfate. El Masri R; Seffouh A; Lortat-Jacob H; Vivès RR Glycoconj J; 2017 Jun; 34(3):285-298. PubMed ID: 27812771 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]