These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 39365878)
1. Data-Efficient Active Learning for Thermodynamic Integration: Acidity Constants of BiVO Schienbein P; Blumberger J Chemphyschem; 2024 Oct; ():e202400490. PubMed ID: 39365878 [TBL] [Abstract][Full Text] [Related]
2. Nanosecond solvation dynamics of the hematite/liquid water interface at hybrid DFT accuracy using committee neural network potentials. Schienbein P; Blumberger J Phys Chem Chem Phys; 2022 Jun; 24(25):15365-15375. PubMed ID: 35703465 [TBL] [Abstract][Full Text] [Related]
3. Automated workflow for computation of redox potentials, acidity constants, and solvation free energies accelerated by machine learning. Wang F; Cheng J J Chem Phys; 2022 Jul; 157(2):024103. PubMed ID: 35840372 [TBL] [Abstract][Full Text] [Related]
4. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007). Hafner J J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862 [TBL] [Abstract][Full Text] [Related]
5. Accelerating Computation of Acidity Constants and Redox Potentials for Aqueous Organic Redox Flow Batteries by Machine Learning Potential-Based Molecular Dynamics. Wang F; Ma Z; Cheng J J Am Chem Soc; 2024 May; 146(21):14566-14575. PubMed ID: 38659097 [TBL] [Abstract][Full Text] [Related]
6. Acidity Constants of the Hematite-Liquid Water Interface from Ab Initio Molecular Dynamics. Gittus OR; von Rudorff GF; Rosso KM; Blumberger J J Phys Chem Lett; 2018 Sep; 9(18):5574-5582. PubMed ID: 30180586 [TBL] [Abstract][Full Text] [Related]
7. Ab Initio Calculations of Free Energy of Activation at Multiple Electronic Structure Levels Made Affordable: An Effective Combination of Perturbation Theory and Machine Learning. Bučko T; Gešvandtnerová M; Rocca D J Chem Theory Comput; 2020 Oct; 16(10):6049-6060. PubMed ID: 32786917 [TBL] [Abstract][Full Text] [Related]
8. Electron and Hole Polarons at the BiVO Wiktor J; Pasquarello A ACS Appl Mater Interfaces; 2019 May; 11(20):18423-18426. PubMed ID: 31021076 [TBL] [Abstract][Full Text] [Related]
9. Surface protonation at the rutile (110) interface: explicit incorporation of solvation structure within the refined MUSIC model framework. Machesky ML; Predota M; Wesolowski DJ; Vlcek L; Cummings PT; Rosenqvist J; Ridley MK; Kubicki JD; Bandura AV; Kumar N; Sofo JO Langmuir; 2008 Nov; 24(21):12331-9. PubMed ID: 18842061 [TBL] [Abstract][Full Text] [Related]
10. pH-Dependent Surface Chemistry from First Principles: Application to the BiVO Ambrosio F; Wiktor J; Pasquarello A ACS Appl Mater Interfaces; 2018 Mar; 10(12):10011-10021. PubMed ID: 29498266 [TBL] [Abstract][Full Text] [Related]
11. Ab initio thermodynamics of liquid and solid water. Cheng B; Engel EA; Behler J; Dellago C; Ceriotti M Proc Natl Acad Sci U S A; 2019 Jan; 116(4):1110-1115. PubMed ID: 30610171 [TBL] [Abstract][Full Text] [Related]
12. Computing Surface Acidity Constants of Proton Hopping Groups from Density Functional Theory-Based Molecular Dynamics: Application to the SnO Jia M; Zhang C; Cox SJ; Sprik M; Cheng J J Chem Theory Comput; 2020 Oct; 16(10):6520-6527. PubMed ID: 32794753 [TBL] [Abstract][Full Text] [Related]
13. Machine-Learned Potentials by Active Learning from Organic Crystal Structure Prediction Landscapes. Butler PWV; Hafizi R; Day GM J Phys Chem A; 2024 Feb; 128(5):945-957. PubMed ID: 38277275 [TBL] [Abstract][Full Text] [Related]
14. Understanding the Temperature Dependence and Finite Size Effects in Ab Initio MD Simulations of the Hydrated Electron. Park SJ; Schwartz BJ J Chem Theory Comput; 2022 Aug; 18(8):4973-4982. PubMed ID: 35834750 [TBL] [Abstract][Full Text] [Related]
15. Committee neural network potentials control generalization errors and enable active learning. Schran C; Brezina K; Marsalek O J Chem Phys; 2020 Sep; 153(10):104105. PubMed ID: 32933264 [TBL] [Abstract][Full Text] [Related]
16. Machine learning potentials for complex aqueous systems made simple. Schran C; Thiemann FL; Rowe P; Müller EA; Marsalek O; Michaelides A Proc Natl Acad Sci U S A; 2021 Sep; 118(38):. PubMed ID: 34518232 [TBL] [Abstract][Full Text] [Related]
17. A Look Inside the Black Box of Machine Learning Photodynamics Simulations. Li J; Lopez SA Acc Chem Res; 2022 Jul; 55(14):1972-1984. PubMed ID: 35796602 [TBL] [Abstract][Full Text] [Related]
18. Theoretical insights into the mechanism of oxygen evolution reaction (OER) on pristine BiVO Bhatt MD; Lee JY Nanotechnology; 2021 May; 32(33):. PubMed ID: 33915525 [TBL] [Abstract][Full Text] [Related]
19. Ab initio machine learning of phase space averages. Weinreich J; Lemm D; von Rudorff GF; von Lilienfeld OA J Chem Phys; 2022 Jul; 157(2):024303. PubMed ID: 35840379 [TBL] [Abstract][Full Text] [Related]