These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 39367008)

  • 1. Peptide hemolytic activity analysis using visual data mining of similarity-based complex networks.
    Castillo-Mendieta K; Agüero-Chapin G; Marquez EA; Perez-Castillo Y; Barigye SJ; Vispo NS; García-Jacas CR; Marrero-Ponce Y
    NPJ Syst Biol Appl; 2024 Oct; 10(1):115. PubMed ID: 39367008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unraveling the hemolytic toxicity tapestry of peptides using chemical space complex networks.
    Castillo-Mendieta K; Agüero-Chapin G; Mora JR; Pérez N; Contreras-Torres E; Valdes-Martini JR; Martinez-Rios F; Marrero-Ponce Y
    Toxicol Sci; 2024 Dec; 202(2):236-249. PubMed ID: 39254655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiquery Similarity Searching Models: An Alternative Approach for Predicting Hemolytic Activity from Peptide Sequence.
    Castillo-Mendieta K; Agüero-Chapin G; Marquez E; Perez-Castillo Y; Barigye SJ; Pérez-Cárdenas M; Peréz-Giménez F; Marrero-Ponce Y
    Chem Res Toxicol; 2024 Apr; 37(4):580-589. PubMed ID: 38501392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complex Networks Analyses of Antibiofilm Peptides: An Emerging Tool for Next-Generation Antimicrobials' Discovery.
    Agüero-Chapin G; Antunes A; Mora JR; Pérez N; Contreras-Torres E; Valdes-Martini JR; Martinez-Rios F; Zambrano CH; Marrero-Ponce Y
    Antibiotics (Basel); 2023 Apr; 12(4):. PubMed ID: 37107109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid transformer-CNN model for accurate prediction of peptide hemolytic potential.
    Almotairi S; Badr E; Abdelbaky I; Elhakeem M; Abdul Salam M
    Sci Rep; 2024 Jun; 14(1):14263. PubMed ID: 38902287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Network Science and Group Fusion Similarity-Based Searching to Explore the Chemical Space of Antiparasitic Peptides.
    Ayala-Ruano S; Marrero-Ponce Y; Aguilera-Mendoza L; Pérez N; Agüero-Chapin G; Antunes A; Aguilar AC
    ACS Omega; 2022 Dec; 7(50):46012-46036. PubMed ID: 36570318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic construction of molecular similarity networks for visual graph mining in chemical space of bioactive peptides: an unsupervised learning approach.
    Aguilera-Mendoza L; Marrero-Ponce Y; García-Jacas CR; Chavez E; Beltran JA; Guillen-Ramirez HA; Brizuela CA
    Sci Rep; 2020 Oct; 10(1):18074. PubMed ID: 33093586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning-guided discovery and design of non-hemolytic peptides.
    Plisson F; Ramírez-Sánchez O; Martínez-Hernández C
    Sci Rep; 2020 Oct; 10(1):16581. PubMed ID: 33024236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HAPPENN is a novel tool for hemolytic activity prediction for therapeutic peptides which employs neural networks.
    Timmons PB; Hewage CM
    Sci Rep; 2020 Jul; 10(1):10869. PubMed ID: 32616760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep mining heterogeneous networks of biomedical linked data to predict novel drug-target associations.
    Zong N; Kim H; Ngo V; Harismendy O
    Bioinformatics; 2017 Aug; 33(15):2337-2344. PubMed ID: 28430977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A low dimensional approach on network characterization.
    Li BY; Zhan C; Yeung LF; Ko KT; Yang G
    PLoS One; 2014; 9(10):e109383. PubMed ID: 25329146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Text mining-based word representations for biomedical data analysis and protein-protein interaction networks in machine learning tasks.
    Alachram H; Chereda H; Beißbarth T; Wingender E; Stegmaier P
    PLoS One; 2021; 16(10):e0258623. PubMed ID: 34653224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a defibrinated human blood hemolysis assay for rapid testing of hemolytic activity compared to computational prediction.
    Carpenter AM; van Hoek ML
    J Immunol Methods; 2024 Jun; 529():113670. PubMed ID: 38604530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipid selectivity in novel antimicrobial peptides: Implication on antimicrobial and hemolytic activity.
    Maturana P; Martinez M; Noguera ME; Santos NC; Disalvo EA; Semorile L; Maffia PC; Hollmann A
    Colloids Surf B Biointerfaces; 2017 May; 153():152-159. PubMed ID: 28236791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HemoFuse: multi-feature fusion based on multi-head cross-attention for identification of hemolytic peptides.
    Zhao Y; Zhang S; Liang Y
    Sci Rep; 2024 Sep; 14(1):22518. PubMed ID: 39342017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine Learning Guided Discovery of Non-Hemolytic Membrane Disruptive Anticancer Peptides.
    Zakharova E; Orsi M; Capecchi A; Reymond JL
    ChemMedChem; 2022 Sep; 17(17):e202200291. PubMed ID: 35880810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of antibacterial and hemolytic activity of synthetic pandinin 2 variants and their inhibition against Mycobacterium tuberculosis.
    Rodríguez A; Villegas E; Montoya-Rosales A; Rivas-Santiago B; Corzo G
    PLoS One; 2014; 9(7):e101742. PubMed ID: 25019413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HemoNet: Predicting hemolytic activity of peptides with integrated feature learning.
    Yaseen A; Gull S; Akhtar N; Amin I; Minhas F
    J Bioinform Comput Biol; 2021 Oct; 19(5):2150021. PubMed ID: 34353244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting lncRNA-disease associations using network topological similarity based on deep mining heterogeneous networks.
    Zhang H; Liang Y; Peng C; Han S; Du W; Li Y
    Math Biosci; 2019 Sep; 315():108229. PubMed ID: 31323239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AMPDeep: hemolytic activity prediction of antimicrobial peptides using transfer learning.
    Salem M; Keshavarzi Arshadi A; Yuan JS
    BMC Bioinformatics; 2022 Sep; 23(1):389. PubMed ID: 36163001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.