These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 39367248)

  • 21. Copper-Catalyzed Oxidative Cleavage of the C-C Bonds of β-Alkoxy Alcohols and β-1 Compounds.
    Kim SA; Kim SE; Kim YK; Jang HY
    ACS Omega; 2020 Dec; 5(49):31684-31691. PubMed ID: 33344820
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Selective valorization of lignin to phenol by direct transformation of C
    Yan J; Meng Q; Shen X; Chen B; Sun Y; Xiang J; Liu H; Han B
    Sci Adv; 2020 Nov; 6(45):. PubMed ID: 33158871
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Selective Carbon-Carbon Bond Cleavage of Cyclopropanols.
    McDonald TR; Mills LR; West MS; Rousseaux SAL
    Chem Rev; 2021 Jan; 121(1):3-79. PubMed ID: 33085458
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Downstream processing of lignin derived feedstock into end products.
    Wong SS; Shu R; Zhang J; Liu H; Yan N
    Chem Soc Rev; 2020 Aug; 49(15):5510-5560. PubMed ID: 32639496
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metal-Catalyzed Carbon-Carbon Bond Cleavage of Unstrained Alcohols.
    Lutz MDR; Morandi B
    Chem Rev; 2021 Jan; 121(1):300-326. PubMed ID: 32639146
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Selective Decarbonylation via Transition-Metal-Catalyzed Carbon-Carbon Bond Cleavage.
    Lu H; Yu TY; Xu PF; Wei H
    Chem Rev; 2021 Jan; 121(1):365-411. PubMed ID: 32543866
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Photocatalytic Conversion of Lignin into Chemicals and Fuels.
    Xiang Z; Han W; Deng J; Zhu W; Zhang Y; Wang H
    ChemSusChem; 2020 Sep; 13(17):4199-4213. PubMed ID: 32329562
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A sustainable wood biorefinery for low-carbon footprint chemicals production.
    Liao Y; Koelewijn SF; Van den Bossche G; Van Aelst J; Van den Bosch S; Renders T; Navare K; Nicolaï T; Van Aelst K; Maesen M; Matsushima H; Thevelein JM; Van Acker K; Lagrain B; Verboekend D; Sels BF
    Science; 2020 Mar; 367(6484):1385-1390. PubMed ID: 32054697
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Heterogeneous Catalyst Design Principles for the Conversion of Lignin into High-Value Commodity Fuels and Chemicals.
    Gale M; Cai CM; Gilliard-Abdul-Aziz KL
    ChemSusChem; 2020 Apr; 13(8):1947-1966. PubMed ID: 31899593
    [TBL] [Abstract][Full Text] [Related]  

  • 30. System-Level Analysis of Lignin Valorization in Lignocellulosic Biorefineries.
    Huang K; Fasahati P; Maravelias CT
    iScience; 2020 Jan; 23(1):100751. PubMed ID: 31884163
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ruthenium-Catalyzed Reductive Cleavage of Unstrained Aryl-Aryl Bonds: Reaction Development and Mechanistic Study.
    Zhu J; Chen PH; Lu G; Liu P; Dong G
    J Am Chem Soc; 2019 Nov; 141(46):18630-18640. PubMed ID: 31674779
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biotransformation of lignin: Mechanisms, applications and future work.
    Li X; Zheng Y
    Biotechnol Prog; 2020 Jan; 36(1):e2922. PubMed ID: 31587530
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure and Chemical Reaction Mechanism of LigU, an Enzyme That Catalyzes an Allylic Isomerization in the Bacterial Degradation of Lignin.
    Hogancamp TN; Cory SA; Barondeau DP; Raushel FM
    Biochemistry; 2019 Aug; 58(33):3494-3503. PubMed ID: 31339729
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differences in S/G ratio in natural poplar variants do not predict catalytic depolymerization monomer yields.
    Anderson EM; Stone ML; Katahira R; Reed M; Muchero W; Ramirez KJ; Beckham GT; Román-Leshkov Y
    Nat Commun; 2019 May; 10(1):2033. PubMed ID: 31048697
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mapping the diversity of microbial lignin catabolism: experiences from the eLignin database.
    Brink DP; Ravi K; Lidén G; Gorwa-Grauslund MF
    Appl Microbiol Biotechnol; 2019 May; 103(10):3979-4002. PubMed ID: 30963208
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A field of dreams: Lignin valorization into chemicals, materials, fuels, and health-care products.
    Becker J; Wittmann C
    Biotechnol Adv; 2019 Nov; 37(6):107360. PubMed ID: 30959173
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reductive catalytic fractionation: state of the art of the lignin-first biorefinery.
    Renders T; Van den Bossche G; Vangeel T; Van Aelst K; Sels B
    Curr Opin Biotechnol; 2019 Apr; 56():193-201. PubMed ID: 30677700
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Advances in microbial lignin degradation and its applications.
    Kamimura N; Sakamoto S; Mitsuda N; Masai E; Kajita S
    Curr Opin Biotechnol; 2019 Apr; 56():179-186. PubMed ID: 30530243
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Catalytic activation of unstrained C(aryl)-C(aryl) bonds in 2,2'-biphenols.
    Zhu J; Wang J; Dong G
    Nat Chem; 2019 Jan; 11(1):45-51. PubMed ID: 30397321
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of a diagnostic structural motif reveals a new reaction intermediate and condensation pathway in kraft lignin formation.
    Lancefield CS; Wienk HLJ; Boelens R; Weckhuysen BM; Bruijnincx PCA
    Chem Sci; 2018 Aug; 9(30):6348-6360. PubMed ID: 30310563
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.