These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 39368772)

  • 1. Roles of noncoding RNAs in diabetic retinopathy: Mechanisms and therapeutic implications.
    Xiao J; Xu Z
    Life Sci; 2024 Nov; 357():123092. PubMed ID: 39368772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic and therapeutic perspectives of non-coding RNA-modulated apoptotic signaling in diabetic retinopathy.
    Wu Q; Liu C; Shu X; Duan L
    Cell Biol Toxicol; 2024 Jul; 40(1):53. PubMed ID: 38970639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noncoding RNAs Are Promising Therapeutic Targets for Diabetic Retinopathy: An Updated Review (2017-2022).
    Wang M; Li Q; Jin M; Wang Z; Zhang X; Sun X; Luo Y
    Biomolecules; 2022 Nov; 12(12):. PubMed ID: 36551201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel regulatory network of linc00174/miR-150-5p/VEGFA modulates pathological angiogenesis in diabetic retinopathy.
    Wang JJ; Wu KF; Wang DD
    Can J Physiol Pharmacol; 2021 Nov; 99(11):1175-1183. PubMed ID: 34081870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long noncoding RNA MALAT1 participates in the pathological angiogenesis of diabetic retinopathy in an oxygen-induced retinopathy mouse model by sponging miR-203a-3p.
    Yu L; Fu J; Yu N; Wu Y; Han N
    Can J Physiol Pharmacol; 2020 Apr; 98(4):219-227. PubMed ID: 31689123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Updates on RPE cell damage in diabetic retinopathy (Review).
    Li M; Tian M; Wang Y; Ma H; Zhou Y; Jiang X; Liu Y
    Mol Med Rep; 2023 Oct; 28(4):. PubMed ID: 37594078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suppressing long noncoding RNA OGRU ameliorates diabetic retinopathy by inhibition of oxidative stress and inflammation via miR-320/USP14 axis.
    Fu S; Zheng Y; Sun Y; Lai M; Qiu J; Gui F; Zeng Q; Liu F
    Free Radic Biol Med; 2021 Jun; 169():361-381. PubMed ID: 33762162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. miRNA, lncRNA and circRNA: Targeted Molecules Full of Therapeutic Prospects in the Development of Diabetic Retinopathy.
    Chang X; Zhu G; Cai Z; Wang Y; Lian R; Tang X; Ma C; Fu S
    Front Endocrinol (Lausanne); 2021; 12():771552. PubMed ID: 34858342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MicroRNA-150 (miR-150) and Diabetic Retinopathy: Is miR-150 Only a Biomarker or Does It Contribute to Disease Progression?
    Ko GY; Yu F; Bayless KJ; Ko ML
    Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36292956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Roles of miRNAs and long noncoding RNAs in the progression of diabetic retinopathy.
    Gong Q; Su G
    Biosci Rep; 2017 Dec; 37(6):. PubMed ID: 29074557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-coding RNAs and exosomal non-coding RNAs in diabetic retinopathy: A narrative review.
    Zhong Y; Xia J; Liao L; Momeni MR
    Int J Biol Macromol; 2024 Feb; 259(Pt 1):128182. PubMed ID: 37977468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long Noncoding RNA PPT2-EGFL8 Regulates Pathological Retinal Neovascularization in PDR by Functioning as a Competing Endogenous RNA.
    Xu Z; Yang J; Zheng H; Xie T; Yang Q; Cai J; Sun C; Cao Y; Wu M; Liu Y; Cui Y; Yao Y; Wang X
    Diabetes; 2023 Jul; 72(7):1012-1027. PubMed ID: 37083867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. hsa_circ_0000047 targeting miR-6720-5p/CYB5R2 axis alleviates inflammation and angiogenesis in diabetic retinopathy.
    Liao L; Chen J; Peng S
    Arch Physiol Biochem; 2024 Oct; 130(5):537-545. PubMed ID: 36971486
    [No Abstract]   [Full Text] [Related]  

  • 14. A comprehensive competitive endogenous RNA network pinpoints key molecules in diabetic retinopathy.
    Wu Y; Jia K; Wu H; Sang A; Wang L; Shi L; Jiang K; Dong J
    Mol Med Rep; 2019 Feb; 19(2):851-860. PubMed ID: 30535492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MicroRNAs: Potential Targets in Diabetic Retinopathy.
    Li X; Yu ZW; Wang Y; Fu YH; Gao XY
    Horm Metab Res; 2020 Mar; 52(3):142-148. PubMed ID: 32215885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long noncoding RNA MIAT regulates primary human retinal pericyte pyroptosis by modulating miR-342-3p targeting of CASP1 in diabetic retinopathy.
    Yu X; Ma X; Lin W; Xu Q; Zhou H; Kuang H
    Exp Eye Res; 2021 Jan; 202():108300. PubMed ID: 33065089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Circular RNA COL1A2 promotes angiogenesis via regulating miR-29b/VEGF axis in diabetic retinopathy.
    Zou J; Liu KC; Wang WP; Xu Y
    Life Sci; 2020 Sep; 256():117888. PubMed ID: 32497630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pathological Perturbations in Diabetic Retinopathy: Hyperglycemia, AGEs, Oxidative Stress and Inflammatory Pathways.
    Sahajpal NS; Goel RK; Chaubey A; Aurora R; Jain SK
    Curr Protein Pept Sci; 2019; 20(1):92-110. PubMed ID: 30264677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AQP4 regulates ferroptosis and oxidative stress of Muller cells in diabetic retinopathy by regulating TRPV4.
    Chen Z; Liu B; Zhou D; Lei M; Yang J; Hu Z; Duan W
    Exp Cell Res; 2024 Jun; 439(1):114087. PubMed ID: 38735619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular investigation of candidate genes for pyroptosis-induced inflammation in diabetic retinopathy.
    Wang N; Ding L; Liu D; Zhang Q; Zheng G; Xia X; Xiong S
    Front Endocrinol (Lausanne); 2022; 13():918605. PubMed ID: 35957838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.