These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 39370459)
1. Continuous measurement in neurocritical care of cerebral blood flow (CBF) calculated from ICP and central venous pressure. Ryding E; Reinstrup P Sci Rep; 2024 Oct; 14(1):23268. PubMed ID: 39370459 [TBL] [Abstract][Full Text] [Related]
2. Limitation of cerebral blood flow by increased venous outflow resistance in elevated ICP. Zadka Y; Rosenthal G; Doron O; Barnea O J Appl Physiol (1985); 2024 Jan; 136(1):224-232. PubMed ID: 38059286 [TBL] [Abstract][Full Text] [Related]
3. Increased Intracranial Pressure Attenuates the Pulsating Component of Cerebral Venous Outflow. Unnerbäck M; Ottesen JT; Reinstrup P Neurocrit Care; 2019 Oct; 31(2):273-279. PubMed ID: 31240621 [TBL] [Abstract][Full Text] [Related]
4. The intracranial pressure curve correlates to the pulsatile component of cerebral blood flow. Unnerbäck M; Bloomfield EL; Söderström S; Reinstrup P J Clin Monit Comput; 2019 Feb; 33(1):77-83. PubMed ID: 29549499 [TBL] [Abstract][Full Text] [Related]
5. A continuous correlation between intracranial pressure and cerebral blood flow velocity reflects cerebral autoregulation impairment during intracranial pressure plateau waves. Lewis PM; Smielewski P; Rosenfeld JV; Pickard JD; Czosnyka M Neurocrit Care; 2014 Dec; 21(3):514-25. PubMed ID: 24865272 [TBL] [Abstract][Full Text] [Related]
6. The influence of airway pressure changes on intracranial pressure (ICP) and the blood flow velocity in the middle cerebral artery (VMCA). Ludwig HC; Klingler M; Timmermann A; Weyland W; Mursch K; Reparon C; Markakis E Anasthesiol Intensivmed Notfallmed Schmerzther; 2000 Mar; 35(3):141-5. PubMed ID: 10768051 [TBL] [Abstract][Full Text] [Related]
8. Mechanisms of reduced cerebral blood flow in cerebral edema and elevated intracranial pressure. Zadka Y; Doron O; Rosenthal G; Barnea O J Appl Physiol (1985); 2023 Feb; 134(2):444-454. PubMed ID: 36603049 [TBL] [Abstract][Full Text] [Related]
9. Validation of a mathematical model for understanding intracranial pressure curve morphology. Unnerbäck M; Ottesen JT; Reinstrup P J Clin Monit Comput; 2020 Jun; 34(3):469-481. PubMed ID: 31264130 [TBL] [Abstract][Full Text] [Related]
10. Bedside monitoring of cerebral blood flow in patients with acute hemispheric stroke. Keller E; Wietasch G; Ringleb P; Scholz M; Schwarz S; Stingele R; Schwab S; Hanley D; Hacke W Crit Care Med; 2000 Feb; 28(2):511-6. PubMed ID: 10708192 [TBL] [Abstract][Full Text] [Related]
11. Continuous optical monitoring of cerebral hemodynamics during head-of-bed manipulation in brain-injured adults. Kim MN; Edlow BL; Durduran T; Frangos S; Mesquita RC; Levine JM; Greenberg JH; Yodh AG; Detre JA Neurocrit Care; 2014 Jun; 20(3):443-53. PubMed ID: 23653267 [TBL] [Abstract][Full Text] [Related]
12. Continuous monitoring of cerebrovascular reactivity using pulse waveform of intracranial pressure. Aries MJ; Czosnyka M; Budohoski KP; Kolias AG; Radolovich DK; Lavinio A; Pickard JD; Smielewski P Neurocrit Care; 2012 Aug; 17(1):67-76. PubMed ID: 22477613 [TBL] [Abstract][Full Text] [Related]
13. Functional relationship of arterial blood pressure, central venous pressure and intracranial pressure in the early phase after subarachnoid hemorrhage. Maissen G; Narula G; Strässle C; Willms J; Muroi C; Keller E Technol Health Care; 2022; 30(3):591-604. PubMed ID: 34459427 [TBL] [Abstract][Full Text] [Related]
14. Consideration of the Intracranial Pressure Threshold Value for the Initiation of Traumatic Brain Injury Treatment: A Xenon CT and Perfusion CT Study. Honda M; Ichibayashi R; Suzuki G; Yokomuro H; Seiki Y; Sase S; Kishi T Neurocrit Care; 2017 Dec; 27(3):308-315. PubMed ID: 28762185 [TBL] [Abstract][Full Text] [Related]
15. ICP curve morphology and intracranial flow-volume changes: a simultaneous ICP and cine phase contrast MRI study in humans. Unnerbäck M; Ottesen JT; Reinstrup P Acta Neurochir (Wien); 2018 Feb; 160(2):219-224. PubMed ID: 29273948 [TBL] [Abstract][Full Text] [Related]
16. Novel method for dynamic control of intracranial pressure. Luciano MG; Dombrowski SM; Qvarlander S; El-Khoury S; Yang J; Thyagaraj S; Loth F J Neurosurg; 2017 May; 126(5):1629-1640. PubMed ID: 27419825 [TBL] [Abstract][Full Text] [Related]
17. The upper limit of cerebral blood flow autoregulation in acute intracranial hypertension. Hauerberg J; Xiaodong M; Willumsen L; Pedersen DB; Juhler M J Neurosurg Anesthesiol; 1998 Apr; 10(2):106-12. PubMed ID: 9559769 [TBL] [Abstract][Full Text] [Related]
18. Associations between intracranial pressure thresholds and multimodal monitoring in acute traumatic neural injury: a scoping review. Stein KY; Amenta F; Gomez A; Froese L; Sainbhi AS; Vakitbilir N; Marquez I; Zeiler FA Acta Neurochir (Wien); 2023 Jul; 165(7):1987-2000. PubMed ID: 37067617 [TBL] [Abstract][Full Text] [Related]
19. Comparison between noninvasive measurement of central venous pressure using near infrared spectroscopy with an invasive central venous pressure monitoring in cardiac surgical Intensive Care Unit. Sathish N; Singh NG; Nagaraja PS; Sarala BM; Prabhushankar CG; Dhananjaya M; Manjunatha N Ann Card Anaesth; 2016; 19(3):405-9. PubMed ID: 27397443 [TBL] [Abstract][Full Text] [Related]
20. [Cerebrovascular fiberoptic catheter oximetry in an intracranial pressure model in swine. New aspects of a clinical routine]. Menzel M; Rieger A; Roth S; Sanchin L; Soukup J; Hennig C; Furka H; Burkert W; Radke J Anaesthesist; 1997 Feb; 46(2):108-13. PubMed ID: 9133171 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]