These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 39371393)

  • 1. Machine learning models to predict 30-day mortality for critical patients with myocardial infarction: a retrospective analysis from MIMIC-IV database.
    Lin X; Pan X; Yang Y; Yang W; Wang X; Zou K; Wang Y; Xiu J; Yu P; Lu J; Zhao Y; Lu H
    Front Cardiovasc Med; 2024; 11():1368022. PubMed ID: 39371393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Constructing a predictive model for the death risk of patients with septic shock based on supervised machine learning algorithms].
    Xie Z; Jin J; Liu D; Lu S; Yu H; Han D; Sun W; Huang M
    Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2024 Apr; 36(4):345-352. PubMed ID: 38813626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Construction of a predictive model for in-hospital mortality of sepsis patients in intensive care unit based on machine learning].
    Zhu M; Hu C; He Y; Qian Y; Tang S; Hu Q; Hao C
    Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2023 Jul; 35(7):696-701. PubMed ID: 37545445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simple APACHE IV risk dynamic nomogram that incorporates early admitted lactate for the initial assessment of 28-day mortality in critically ill patients with acute myocardial infarction.
    Song J; Yu T; Yan Q; Wu L; Li S; Wang L
    BMC Cardiovasc Disord; 2022 Nov; 22(1):502. PubMed ID: 36434509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Development and validation of a prognostic model for patients with sepsis in intensive care unit].
    Jiang Z; Wang H; Wang S; Guan C; Qu Y
    Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2023 Aug; 35(8):800-806. PubMed ID: 37593856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction model of in-hospital mortality in intensive care unit patients with cardiac arrest: a retrospective analysis of MIMIC -IV database based on machine learning.
    Sun Y; He Z; Ren J; Wu Y
    BMC Anesthesiol; 2023 May; 23(1):178. PubMed ID: 37231340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Development and validation of a nomogram for predicting 3-month mortality risk in patients with sepsis-associated acute kidney injury].
    Yue X; Li Z; Wang L; Huang L; Zhao Z; Wang P; Wang S; Gong X; Zhang S; Wang Z
    Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2024 May; 36(5):465-470. PubMed ID: 38845491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning prediction models and nomogram to predict the risk of in-hospital death for severe DKA: A clinical study based on MIMIC-IV, eICU databases, and a college hospital ICU.
    Xie W; Li Y; Meng X; Zhao M
    Int J Med Inform; 2023 Jun; 174():105049. PubMed ID: 37001474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction and evaluation of a mortality prediction model for patients with acute kidney injury undergoing continuous renal replacement therapy based on machine learning algorithms.
    Wang Y; Sun X; Lu J; Zhong L; Yang Z
    Ann Med; 2024 Dec; 56(1):2388709. PubMed ID: 39155811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction model of in-hospital mortality in intensive care unit patients with heart failure: machine learning-based, retrospective analysis of the MIMIC-III database.
    Li F; Xin H; Zhang J; Fu M; Zhou J; Lian Z
    BMJ Open; 2021 Jul; 11(7):e044779. PubMed ID: 34301649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An early warning model for predicting major adverse kidney events within 30 days in sepsis patients.
    Yu X; Xin Q; Hao Y; Zhang J; Ma T
    Front Med (Lausanne); 2023; 10():1327036. PubMed ID: 38469459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A time-incorporated SOFA score-based machine learning model for predicting mortality in critically ill patients: A multicenter, real-world study.
    Liu Y; Gao K; Deng H; Ling T; Lin J; Yu X; Bo X; Zhou J; Gao L; Wang P; Hu J; Zhang J; Tong Z; Liu Y; Shi Y; Ke L; Gao Y; Li W
    Int J Med Inform; 2022 Jul; 163():104776. PubMed ID: 35512625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predictive nomogram for 28-day mortality risk in mitral valve disorder patients in the intensive care unit: A comprehensive assessment from the MIMIC-III database.
    Qiu Y; Li M; Song X; Li Z; Ma A; Meng Z; Li Y; Tan M
    Int J Cardiol; 2024 Jul; 407():132105. PubMed ID: 38677334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a Nomogram to Predict 28-Day Mortality of Patients With Sepsis-Induced Coagulopathy: An Analysis of the MIMIC-III Database.
    Lu Z; Zhang J; Hong J; Wu J; Liu Y; Xiao W; Hua T; Yang M
    Front Med (Lausanne); 2021; 8():661710. PubMed ID: 33889591
    [No Abstract]   [Full Text] [Related]  

  • 15. Machine learning for prediction of in-hospital mortality in lung cancer patients admitted to intensive care unit.
    Huang T; Le D; Yuan L; Xu S; Peng X
    PLoS One; 2023; 18(1):e0280606. PubMed ID: 36701342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning-based in-hospital mortality risk prediction tool for intensive care unit patients with heart failure.
    Chen Z; Li T; Guo S; Zeng D; Wang K
    Front Cardiovasc Med; 2023; 10():1119699. PubMed ID: 37077747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and validation of a nomogram model for predicting 28-day mortality in patients with sepsis.
    Wang X; Li S; Cao Q; Chang J; Pan J; Wang Q; Wang N
    Heliyon; 2024 Aug; 10(16):e35641. PubMed ID: 39220984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a novel tool: a nomogram for predicting in-hospital mortality of patients in intensive care unit after percutaneous coronary intervention.
    Yuan M; Ren BC; Wang Y; Ren F; Gao D
    BMC Anesthesiol; 2023 Jan; 23(1):5. PubMed ID: 36609220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interpretable machine learning model for early prediction of 28-day mortality in ICU patients with sepsis-induced coagulopathy: development and validation.
    Zhou S; Lu Z; Liu Y; Wang M; Zhou W; Cui X; Zhang J; Xiao W; Hua T; Zhu H; Yang M
    Eur J Med Res; 2024 Jan; 29(1):14. PubMed ID: 38172962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Establishment and validation of a prognosis nomogram for MIMIC-III patients with liver cirrhosis complicated with hepatic encephalopathy.
    Yan W; Yao Z; Ou Q; Ye G
    BMC Gastroenterol; 2023 Sep; 23(1):335. PubMed ID: 37770848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.