These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 3937193)

  • 1. Breathing response of the tegu lizard to 1-4% CO2 in the mouth and nose or inspired into the lungs.
    Ballam GO
    Respir Physiol; 1985 Dec; 62(3):375-86. PubMed ID: 3937193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ventilatory response to inspired CO2 in the lizard, Tupinambis nigropunctatus.
    Ballam GO
    Comp Biochem Physiol A Comp Physiol; 1984; 78(4):757-62. PubMed ID: 6149049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of venous (gut) CO2 loading on intrapulmonary gas fractions and ventilation in the tegu lizard.
    Ballam GO; Donaldson LA
    J Comp Physiol B; 1988; 158(5):591-600. PubMed ID: 3150407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A decrease in nasal CO2 stimulates breathing in the tegu lizard.
    Coates EL; Furilla RA; Ballam GO; Bartlett D
    Respir Physiol; 1991 Oct; 86(1):65-75. PubMed ID: 1759054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Upper airway CO2 receptors in tegu lizards: localization and ventilatory sensitivity.
    Coates EL; Ballam GO
    J Comp Physiol B; 1987; 157(4):483-9. PubMed ID: 2822784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of upper airway CO2 pattern on ventilatory frequency in tegu lizards.
    Ballam GO; Coates EL
    Am J Physiol; 1989 Jul; 257(1 Pt 2):R156-61. PubMed ID: 2546453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Breathing and upper airway CO2 in reptiles: role of the nasal and vomeronasal systems.
    Coates EL; Ballam GO
    Am J Physiol; 1989 Jan; 256(1 Pt 2):R91-7. PubMed ID: 2536251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nasal high flow reduces dead space.
    Möller W; Feng S; Domanski U; Franke KJ; Celik G; Bartenstein P; Becker S; Meyer G; Schmid O; Eickelberg O; Tatkov S; Nilius G
    J Appl Physiol (1985); 2017 Jan; 122(1):191-197. PubMed ID: 27856714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An appropriate inspiratory flow pattern can enhance CO2 exchange, facilitating protective ventilation of healthy lungs.
    Sturesson LW; Malmkvist G; Allvin S; Collryd M; Bodelsson M; Jonson B
    Br J Anaesth; 2016 Aug; 117(2):243-9. PubMed ID: 27440637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An assessment of nasal functions in control of breathing.
    Tanaka Y; Morikawa T; Honda Y
    J Appl Physiol (1985); 1988 Oct; 65(4):1520-4. PubMed ID: 3141357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intrapulmonary receptors in the Tegu lizard: I. Sensitivity to CO2.
    Feede MR; Kuhlmann WD; Scheid P
    Respir Physiol; 1977 Feb; 29(1):35-48. PubMed ID: 847308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How toads breathe: control of air flow to and from the lungs by the nares in Bufo marinus.
    Jones RM
    Respir Physiol; 1982 Aug; 49(2):251-65. PubMed ID: 6815751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of ventilatory variables on gas exchange and hemodynamics during total liquid ventilation in a rat model.
    Matsuda K; Sawada S; Bartlett RH; Hirschl RB
    Crit Care Med; 2003 Jul; 31(7):2034-40. PubMed ID: 12847401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Patterns of breathing in response to alternating patterns of alveolar carbon dioxide pressures in man.
    Cunningham DJ; Howson MG; Metias EF; Petersen ES
    J Physiol; 1986 Jul; 376():31-45. PubMed ID: 3098966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of ventilation in the caiman (Caiman latirostris): effects of inspired CO2 on pulmonary and upper airway chemoreceptors.
    Tattersall GJ; de Andrade DV; Brito SP; Abe AS; Milsom WK
    J Comp Physiol B; 2006 Feb; 176(2):125-38. PubMed ID: 16283333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Breathing pattern in humans: elevated CO2 or low O2 on positive airway pressure.
    Hirsch JA; Bishop B
    J Appl Physiol Respir Environ Exerc Physiol; 1984 Mar; 56(3):777-84. PubMed ID: 6423592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of airway mechanoreceptors in the inhibition of inspiration during mechanical ventilation in humans.
    Simon PM; Skatrud JB; Badr MS; Griffin DM; Iber C; Dempsey JA
    Am Rev Respir Dis; 1991 Nov; 144(5):1033-41. PubMed ID: 1952428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of global inspiratory muscle fatigue on ventilatory and respiratory muscle responses to CO2.
    Yan S; Sliwinski P; Gauthier AP; Lichros I; Zakynthinos S; Macklem PT
    J Appl Physiol (1985); 1993 Sep; 75(3):1371-7. PubMed ID: 8226553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of nasal cold receptors on pattern of breathing.
    Burgess KR; Whitelaw WA
    J Appl Physiol (1985); 1988 Jan; 64(1):371-6. PubMed ID: 3128527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of temperature on chemical control of ventilation in Mexican black iguanas.
    Dupré RK; Hicks JW; Wood SC
    Am J Physiol; 1989 Nov; 257(5 Pt 2):R1258-63. PubMed ID: 2511769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.