These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 39371981)

  • 1. Hedgehog Zinc Oxide-Graphene Quantum Dot Heterostructures as Photocatalysts for Visible-Light-Driven Water Splitting.
    Le TKO; Mapari MG; Kim T
    ACS Omega; 2024 Oct; 9(39):40790-40800. PubMed ID: 39371981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Situ Charge Transfer at the Ag@ZnO Photoelectrochemical Interface toward the High Photocatalytic Performance of H
    Trang TNQ; Phan TB; Nam ND; Thu VTH
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):12195-12206. PubMed ID: 32013392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlled fabrication and photocatalytic properties of a three-dimensional ZnO nanowire/reduced graphene oxide/CdS heterostructure on carbon cloth.
    Wang Y; Wang F; He J
    Nanoscale; 2013 Nov; 5(22):11291-7. PubMed ID: 24096940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visible-Light-Driven Photocatalytic Activity of SnO
    Vattikuti SVP; Reddy PAK; Shim J; Byon C
    ACS Omega; 2018 Jul; 3(7):7587-7602. PubMed ID: 31458911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep-Eutectic-Solvent-Assisted Synthesis of a Z-Scheme BiVO
    Ren H; Lv K; Liu W; Li P; Zhang Y; Lv Y
    Micromachines (Basel); 2022 Sep; 13(10):. PubMed ID: 36295957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rational Design of ZnO/Sc
    Tang Y; Lu Y; Ma B; Song J; Bai L; Wang Y; Chen Y; Liu M
    Molecules; 2024 Sep; 29(19):. PubMed ID: 39407568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-throughput Production of ZnO-MoS
    Dong H; Li J; Chen M; Wang H; Jiang X; Xiao Y; Tian B; Zhang X
    Materials (Basel); 2019 Jul; 12(14):. PubMed ID: 31373301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Charge separation effect in the nanocomposites of Co
    Masteri-Farahani M; Mosleh N; Ramzi S
    Environ Sci Pollut Res Int; 2022 Aug; 29(37):56490-56501. PubMed ID: 35347623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and characterization of pristine and strontium-doped zinc oxide nanoparticles for methyl green photo-degradation application.
    Akram R; Almohaimeed ZM; Bashir A; Ikram M; Qadir KW; Zafar Q
    Nanotechnology; 2022 May; 33(29):. PubMed ID: 35504008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene Quantum Dots Improved "Caterpillar"-like TiO
    Ma J; Chu L; Guo Y; Sun C; Yan H; Li Z; Li M
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Defect States Control Effective Band Gap and Photochemistry of Graphene Quantum Dots.
    Melo MA; Osterloh FE
    ACS Appl Mater Interfaces; 2018 Aug; 10(32):27195-27204. PubMed ID: 30020760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Type-I band alignment of BX-ZnO (X = As, P) van der Waals heterostructures as high-efficiency water splitting photocatalysts: a first-principles study.
    Do TN; Idrees M; Binh NTT; Phuc HV; Hieu NN; Hoa LT; Amin B; Van H
    RSC Adv; 2020 Dec; 10(72):44545-44550. PubMed ID: 35517160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanostructured SnO2-ZnO heterojunction photocatalysts showing enhanced photocatalytic activity for the degradation of organic dyes.
    Uddin MT; Nicolas Y; Olivier C; Toupance T; Servant L; Müller MM; Kleebe HJ; Ziegler J; Jaegermann W
    Inorg Chem; 2012 Jul; 51(14):7764-73. PubMed ID: 22734686
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical study on photocatalytic performance of ZnO/C
    Liu M; Tang Y; Yao H; Bai L; Song J; Ma B
    Front Chem; 2022; 10():1048437. PubMed ID: 36339040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CuO quantum-dot-sensitized mesoporous ZnO for visible-light photocatalysis.
    Liu Y; Shi J; Peng Q; Li Y
    Chemistry; 2013 Mar; 19(13):4319-26. PubMed ID: 23447144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-Dimensional Core-Shell Nanorod Arrays for Efficient Visible-Light Photocatalytic H
    You D; Xu C; Wang J; Su W; Zhang W; Zhao J; Qin F; Liu Y
    ACS Appl Mater Interfaces; 2018 Oct; 10(41):35184-35193. PubMed ID: 30256090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of Efficient Charge Transfer at the Interface between Mixed-Phase Copper-Cuprous Oxide and Conducting Polymer Nanostructures for Photocatalytic Water Splitting.
    Ghosh S; Bera S; Sardar S; Pal S; Camargo FVA; D'Andrea C; Cerullo G
    ACS Appl Mater Interfaces; 2023 Apr; 15(15):18867-18877. PubMed ID: 37023322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A first-principles study of two-dimensional NbSe
    Yeoh KH; Chew KH; Yoon TL; Chang YHR; Ong DS
    Phys Chem Chem Phys; 2021 Nov; 23(42):24222-24232. PubMed ID: 34668497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visible-light-driven photocatalytic degradation of safranin-T dye using functionalized graphene oxide nanosheet (FGS)/ZnO nanocomposites.
    Nenavathu BP; Kandula S; Verma S
    RSC Adv; 2018 May; 8(35):19659-19667. PubMed ID: 35540966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photocatalytic degradation of cefixime using visible light-driven Z-scheme ZnO nanorod/Zn
    Behineh ES; Solaimany Nazar AR; Farhadian M; Moghadam M
    J Environ Manage; 2022 Aug; 316():115195. PubMed ID: 35537268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.