These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 39372030)
1. Research on the Remaining Useful Life Prediction Method of Energy Storage Battery Based on Multimodel Integration. Shao L; Zhao L; Liu H; Zhang D; Li J; Li C ACS Omega; 2024 Oct; 9(39):40496-40510. PubMed ID: 39372030 [TBL] [Abstract][Full Text] [Related]
2. A remaining useful life estimation method based on long short-term memory and federated learning for electric vehicles in smart cities. Chen X; Chen Z; Zhang M; Wang Z; Liu M; Fu M; Wang P PeerJ Comput Sci; 2023; 9():e1652. PubMed ID: 38077580 [TBL] [Abstract][Full Text] [Related]
3. XGBoost-Based Remaining Useful Life Estimation Model with Extended Kalman Particle Filter for Lithium-Ion Batteries. Jafari S; Byun YC Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502223 [TBL] [Abstract][Full Text] [Related]
4. Remaining useful life prediction of Lithium-ion batteries using spatio-temporal multimodal attention networks. Suh S; Mittal DA; Bello H; Zhou B; Jha MS; Lukowicz P Heliyon; 2024 Aug; 10(16):e36236. PubMed ID: 39262949 [TBL] [Abstract][Full Text] [Related]
5. A Hybrid Data-Driven Approach for Multistep Ahead Prediction of State of Health and Remaining Useful Life of Lithium-Ion Batteries. Ali MU; Zafar A; Masood H; Kallu KD; Khan MA; Tariq U; Kim YJ; Chang B Comput Intell Neurosci; 2022; 2022():1575303. PubMed ID: 35733564 [TBL] [Abstract][Full Text] [Related]
6. Early prediction of remaining useful life for lithium-ion batteries based on CEEMDAN-transformer-DNN hybrid model. Cai Y; Li W; Zahid T; Zheng C; Zhang Q; Xu K Heliyon; 2023 Jul; 9(7):e17754. PubMed ID: 37456048 [TBL] [Abstract][Full Text] [Related]
7. Remaining Useful Life Prediction Based on Adaptive SHRINKAGE Processing and Temporal Convolutional Network. Wang H; Yang J; Shi L; Wang R Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501790 [TBL] [Abstract][Full Text] [Related]
8. A Novel Remaining Useful Life Prediction Method for Capacity Diving Lithium-Ion Batteries. Gao K; Xu J; Li Z; Cai Z; Jiang D; Zeng A ACS Omega; 2022 Aug; 7(30):26701-26714. PubMed ID: 35936419 [TBL] [Abstract][Full Text] [Related]
9. Remaining useful life prediction of high-capacity lithium-ion batteries based on incremental capacity analysis and Gaussian kernel function optimization. Tang Y; Zhong S; Wang P; Zhang Y; Wang Y Sci Rep; 2024 Oct; 14(1):23524. PubMed ID: 39384566 [TBL] [Abstract][Full Text] [Related]
10. A Hybrid Data Preprocessing-Based Hierarchical Attention BiLSTM Network for Remaining Useful Life Prediction of Spacecraft Lithium-Ion Batteries. Luo T; Liu M; Shi P; Duan G; Cao X IEEE Trans Neural Netw Learn Syst; 2023 Sep; PP():. PubMed ID: 37725745 [TBL] [Abstract][Full Text] [Related]
11. Remaining useful life and state of health prediction for lithium batteries based on differential thermal voltammetry and a deep learning model. Zhang L; Wang W; Yu H; Zhang Z; Yang X; Liang F; Li S; Yang S; Liu X iScience; 2022 Dec; 25(12):105638. PubMed ID: 36536681 [TBL] [Abstract][Full Text] [Related]
12. Remaining Useful Life Prediction of Lithium-Ion Batteries Using Neural Networks with Adaptive Bayesian Learning. Pugalenthi K; Park H; Hussain S; Raghavan N Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632212 [TBL] [Abstract][Full Text] [Related]
13. Life Prediction of Battery Using a Neural Gaussian Process with Early Discharge Characteristics. Yin A; Tan Z; Tan J Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33562499 [TBL] [Abstract][Full Text] [Related]
14. Prognostics of Lithium-Ion Batteries Based on Wavelet Denoising and DE-RVM. Zhang C; He Y; Yuan L; Xiang S; Wang J Comput Intell Neurosci; 2015; 2015():918305. PubMed ID: 26413090 [TBL] [Abstract][Full Text] [Related]
15. An interpretable online prediction method for remaining useful life of lithium-ion batteries. Li Z; Shen S; Ye Y; Cai Z; Zhen A Sci Rep; 2024 May; 14(1):12541. PubMed ID: 38821997 [TBL] [Abstract][Full Text] [Related]
16. Machine Learning: An Advanced Platform for Materials Development and State Prediction in Lithium-Ion Batteries. Lv C; Zhou X; Zhong L; Yan C; Srinivasan M; Seh ZW; Liu C; Pan H; Li S; Wen Y; Yan Q Adv Mater; 2022 Jun; 34(25):e2101474. PubMed ID: 34490683 [TBL] [Abstract][Full Text] [Related]
17. Long Short-Term Memory Neural Network with Transfer Learning and Ensemble Learning for Remaining Useful Life Prediction. Wang L; Liu H; Pan Z; Fan D; Zhou C; Wang Z Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957301 [TBL] [Abstract][Full Text] [Related]
18. Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Gaussian Processes Mixture. Li L; Wang P; Chao KH; Zhou Y; Xie Y PLoS One; 2016; 11(9):e0163004. PubMed ID: 27632176 [TBL] [Abstract][Full Text] [Related]
19. A Remaining Useful Life Prognosis of Turbofan Engine Using Temporal and Spatial Feature Fusion. Peng C; Chen Y; Chen Q; Tang Z; Li L; Gui W Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33435633 [TBL] [Abstract][Full Text] [Related]
20. A Review on the Prediction of Health State and Serving Life of Lithium-Ion Batteries. Pang X; Zhong S; Wang Y; Yang W; Zheng W; Sun G Chem Rec; 2022 Oct; 22(10):e202200131. PubMed ID: 35785467 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]