These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 39372677)
1. CyaY and TusA regulate ISC- and SUF-mediated l-cysteine desulfurase activity. Olivieri P; Crack JC; Lehmann A; Le Brun NE; Leimkühler S RSC Chem Biol; 2024 Sep; 5(11):1165-76. PubMed ID: 39372677 [TBL] [Abstract][Full Text] [Related]
2. Binding of IscU and TusA to different but competing sites of IscS influences the activity of IscS and directs sulfur to the respective biomolecular synthesis pathway. Olivieri P; Klabes M; Crack JC; Lehmann A; Bennett SP; Le Brun NE; Leimkühler S Microbiol Spectr; 2024 Jul; 12(8):e0094924. PubMed ID: 38980029 [TBL] [Abstract][Full Text] [Related]
3. The Role of SufS Is Restricted to Fe-S Cluster Biosynthesis in Escherichia coli. Bühning M; Valleriani A; Leimkühler S Biochemistry; 2017 Apr; 56(14):1987-2000. PubMed ID: 28323419 [TBL] [Abstract][Full Text] [Related]
4. Structural basis for Fe-S cluster assembly and tRNA thiolation mediated by IscS protein-protein interactions. Shi R; Proteau A; Villarroya M; Moukadiri I; Zhang L; Trempe JF; Matte A; Armengod ME; Cygler M PLoS Biol; 2010 Apr; 8(4):e1000354. PubMed ID: 20404999 [TBL] [Abstract][Full Text] [Related]
5. TusA influences Fe-S cluster assembly and iron homeostasis in Olivieri P; Zupok A; Yildiz T; Oltmanns J; Lehmann A; Sokolowska E; Skirycz A; Schünemann V; Leimkühler S Microbiol Spectr; 2024 Aug; 12(8):e0055624. PubMed ID: 38916309 [TBL] [Abstract][Full Text] [Related]
6. The SufE sulfur-acceptor protein contains a conserved core structure that mediates interdomain interactions in a variety of redox protein complexes. Goldsmith-Fischman S; Kuzin A; Edstrom WC; Benach J; Shastry R; Xiao R; Acton TB; Honig B; Montelione GT; Hunt JF J Mol Biol; 2004 Nov; 344(2):549-65. PubMed ID: 15522304 [TBL] [Abstract][Full Text] [Related]
7. Iron-sulfur cluster biosynthesis: characterization of Escherichia coli CYaY as an iron donor for the assembly of [2Fe-2S] clusters in the scaffold IscU. Layer G; Ollagnier-de Choudens S; Sanakis Y; Fontecave M J Biol Chem; 2006 Jun; 281(24):16256-63. PubMed ID: 16603772 [TBL] [Abstract][Full Text] [Related]
8. The E. coli SufS-SufE sulfur transfer system is more resistant to oxidative stress than IscS-IscU. Dai Y; Outten FW FEBS Lett; 2012 Nov; 586(22):4016-22. PubMed ID: 23068614 [TBL] [Abstract][Full Text] [Related]
9. Escherichia coli SufE sulfur transfer protein modulates the SufS cysteine desulfurase through allosteric conformational dynamics. Singh H; Dai Y; Outten FW; Busenlehner LS J Biol Chem; 2013 Dec; 288(51):36189-200. PubMed ID: 24196966 [TBL] [Abstract][Full Text] [Related]
10. Biogenesis of Fe-S cluster by the bacterial Suf system: SufS and SufE form a new type of cysteine desulfurase. Loiseau L; Ollagnier-de-Choudens S; Nachin L; Fontecave M; Barras F J Biol Chem; 2003 Oct; 278(40):38352-9. PubMed ID: 12876288 [TBL] [Abstract][Full Text] [Related]
11. TusA (YhhP) and IscS are required for molybdenum cofactor-dependent base-analog detoxification. Kozmin SG; Stepchenkova EI; Schaaper RM Microbiologyopen; 2013 Oct; 2(5):743-55. PubMed ID: 23894086 [TBL] [Abstract][Full Text] [Related]
12. [2Fe-2S]-ferredoxin binds directly to cysteine desulfurase and supplies an electron for iron-sulfur cluster assembly but is displaced by the scaffold protein or bacterial frataxin. Kim JH; Frederick RO; Reinen NM; Troupis AT; Markley JL J Am Chem Soc; 2013 Jun; 135(22):8117-20. PubMed ID: 23682711 [TBL] [Abstract][Full Text] [Related]
13. Mechanistic studies of the SufS-SufE cysteine desulfurase: evidence for sulfur transfer from SufS to SufE. Ollagnier-de-Choudens S; Lascoux D; Loiseau L; Barras F; Forest E; Fontecave M FEBS Lett; 2003 Dec; 555(2):263-7. PubMed ID: 14644425 [TBL] [Abstract][Full Text] [Related]
14. Structural changes during cysteine desulfurase CsdA and sulfur acceptor CsdE interactions provide insight into the trans-persulfuration. Kim S; Park S J Biol Chem; 2013 Sep; 288(38):27172-27180. PubMed ID: 23913692 [TBL] [Abstract][Full Text] [Related]
15. The β-latch structural element of the SufS cysteine desulfurase mediates active site accessibility and SufE transpersulfurase positioning. Gogar RK; Carroll F; Conte JV; Nasef M; Dunkle JA; Frantom PA J Biol Chem; 2023 Mar; 299(3):102966. PubMed ID: 36736428 [TBL] [Abstract][Full Text] [Related]
16. Molecular basis of function and the unusual antioxidant activity of a cyanobacterial cysteine desulfurase. Banerjee M; Chakravarty D; Ballal A Biochem J; 2017 Jul; 474(14):2435-2447. PubMed ID: 28592683 [TBL] [Abstract][Full Text] [Related]
17. The Molecular Bases of the Dual Regulation of Bacterial Iron Sulfur Cluster Biogenesis by CyaY and IscX. Adinolfi S; Puglisi R; Crack JC; Iannuzzi C; Dal Piaz F; Konarev PV; Svergun DI; Martin S; Le Brun NE; Pastore A Front Mol Biosci; 2017; 4():97. PubMed ID: 29457004 [TBL] [Abstract][Full Text] [Related]
18. The SufE protein and the SufBCD complex enhance SufS cysteine desulfurase activity as part of a sulfur transfer pathway for Fe-S cluster assembly in Escherichia coli. Outten FW; Wood MJ; Munoz FM; Storz G J Biol Chem; 2003 Nov; 278(46):45713-9. PubMed ID: 12941942 [TBL] [Abstract][Full Text] [Related]
19. Changes in Protein Dynamics in Escherichia coli SufS Reveal a Possible Conserved Regulatory Mechanism in Type II Cysteine Desulfurase Systems. Kim D; Singh H; Dai Y; Dong G; Busenlehner LS; Outten FW; Frantom PA Biochemistry; 2018 Sep; 57(35):5210-5217. PubMed ID: 29589903 [TBL] [Abstract][Full Text] [Related]
20. Structural and Biochemical Characterization of Elchennawi I; Carpentier P; Caux C; Ponge M; Ollagnier de Choudens S Biomolecules; 2023 Apr; 13(5):. PubMed ID: 37238602 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]