These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 39373051)

  • 1. scDFN: enhancing single-cell RNA-seq clustering with deep fusion networks.
    Liu T; Jia C; Bi Y; Guo X; Zou Q; Li F
    Brief Bioinform; 2024 Sep; 25(6):. PubMed ID: 39373051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. scZAG: Integrating ZINB-Based Autoencoder with Adaptive Data Augmentation Graph Contrastive Learning for scRNA-seq Clustering.
    Zhang T; Ren J; Li L; Wu Z; Zhang Z; Dong G; Wang G
    Int J Mol Sci; 2024 May; 25(11):. PubMed ID: 38892162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering.
    Wang Y; Yu Z; Li S; Bian C; Liang Y; Wong KC; Li X
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36734596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DCRELM: dual correlation reduction network-based extreme learning machine for single-cell RNA-seq data clustering.
    Gao Q; Ai Q
    Sci Rep; 2024 Jun; 14(1):13541. PubMed ID: 38866896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep structural clustering for single-cell RNA-seq data jointly through autoencoder and graph neural network.
    Gan Y; Huang X; Zou G; Zhou S; Guan J
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35172334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clustering scRNA-seq data with the cross-view collaborative information fusion strategy.
    Lou Z; Wei X; Hu Y; Hu S; Wu Y; Tian Z
    Brief Bioinform; 2024 Sep; 25(6):. PubMed ID: 39402696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Attention-based deep clustering method for scRNA-seq cell type identification.
    Li S; Guo H; Zhang S; Li Y; Li M
    PLoS Comput Biol; 2023 Nov; 19(11):e1011641. PubMed ID: 37948464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. scGAAC: A graph attention autoencoder for clustering single-cell RNA-sequencing data.
    Zhang L; Xiang H; Wang F; Chen Z; Shen M; Ma J; Liu H; Zheng H
    Methods; 2024 Sep; 229():115-124. PubMed ID: 38950719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Multi-Constraint Soft Clustering Analysis for Single-Cell RNA-Seq Data via Zero-Inflated Autoencoder Embedding.
    He Y; Chen X; Tu NH; Luo J
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(3):2254-2265. PubMed ID: 37022218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hybrid deep clustering approach for robust cell type profiling using single-cell RNA-seq data.
    Srinivasan S; Leshchyk A; Johnson NT; Korkin D
    RNA; 2020 Oct; 26(10):1303-1319. PubMed ID: 32532794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. scCompressSA: dual-channel self-attention based deep autoencoder model for single-cell clustering by compressing gene-gene interactions.
    Zhang W; Yu R; Xu Z; Li J; Gao W; Jiang M; Dai Q
    BMC Genomics; 2024 Apr; 25(1):423. PubMed ID: 38684946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-View Clustering With Graph Learning for scRNA-Seq Data.
    Wu W; Zhang W; Hou W; Ma X
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(6):3535-3546. PubMed ID: 37486829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep enhanced constraint clustering based on contrastive learning for scRNA-seq data.
    Gan Y; Chen Y; Xu G; Guo W; Zou G
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37313714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autoencoder-based cluster ensembles for single-cell RNA-seq data analysis.
    Geddes TA; Kim T; Nan L; Burchfield JG; Yang JYH; Tao D; Yang P
    BMC Bioinformatics; 2019 Dec; 20(Suppl 19):660. PubMed ID: 31870278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. nsDCC: dual-level contrastive clustering with nonuniform sampling for scRNA-seq data analysis.
    Wang L; Li W; Zhou F; Yu K; Feng C; Zhao D
    Brief Bioinform; 2024 Sep; 25(6):. PubMed ID: 39327063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning tackles single-cell analysis-a survey of deep learning for scRNA-seq analysis.
    Flores M; Liu Z; Zhang T; Hasib MM; Chiu YC; Ye Z; Paniagua K; Jo S; Zhang J; Gao SJ; Jin YF; Chen Y; Huang Y
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34929734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-cell RNA-seq clustering: datasets, models, and algorithms.
    Peng L; Tian X; Tian G; Xu J; Huang X; Weng Y; Yang J; Zhou L
    RNA Biol; 2020 Jun; 17(6):765-783. PubMed ID: 32116127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learning deep features and topological structure of cells for clustering of scRNA-sequencing data.
    Wang H; Ma X
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35302164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. scLEGA: an attention-based deep clustering method with a tendency for low expression of genes on single-cell RNA-seq data.
    Liu Z; Liang Y; Wang G; Zhang T
    Brief Bioinform; 2024 Jul; 25(5):. PubMed ID: 39060167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. scTPC: a novel semisupervised deep clustering model for scRNA-seq data.
    Qiu Y; Yang L; Jiang H; Zou Q
    Bioinformatics; 2024 May; 40(5):. PubMed ID: 38684178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.