These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Comparison of Supervised Machine Learning Algorithms for Classifying of Home Discharge Possibility in Convalescent Stroke Patients: A Secondary Analysis. Imura T; Toda H; Iwamoto Y; Inagawa T; Imada N; Tanaka R; Inoue Y; Araki H; Araki O J Stroke Cerebrovasc Dis; 2021 Oct; 30(10):106011. PubMed ID: 34325274 [TBL] [Abstract][Full Text] [Related]
3. Construction of efficacious gait and upper limb functional interventions based on brain plasticity evidence and model-based measures for stroke patients. Daly JJ; Ruff RL ScientificWorldJournal; 2007 Dec; 7():2031-45. PubMed ID: 18167618 [TBL] [Abstract][Full Text] [Related]
4. Deep convolutional neural network and IoT technology for healthcare. Wassan S; Dongyan H; Suhail B; Jhanjhi NZ; Xiao G; Ahmed S; Murugesan RK Digit Health; 2024; 10():20552076231220123. PubMed ID: 38250147 [TBL] [Abstract][Full Text] [Related]
5. The use of machine learning and deep learning techniques to assess proprioceptive impairments of the upper limb after stroke. Hossain D; Scott SH; Cluff T; Dukelow SP J Neuroeng Rehabil; 2023 Jan; 20(1):15. PubMed ID: 36707846 [TBL] [Abstract][Full Text] [Related]
6. Robot-assisted training compared with an enhanced upper limb therapy programme and with usual care for upper limb functional limitation after stroke: the RATULS three-group RCT. Rodgers H; Bosomworth H; Krebs HI; van Wijck F; Howel D; Wilson N; Finch T; Alvarado N; Ternent L; Fernandez-Garcia C; Aird L; Andole S; Cohen DL; Dawson J; Ford GA; Francis R; Hogg S; Hughes N; Price CI; Turner DL; Vale L; Wilkes S; Shaw L Health Technol Assess; 2020 Oct; 24(54):1-232. PubMed ID: 33140719 [TBL] [Abstract][Full Text] [Related]
7. Development and Clinical Evaluation of a Web-Based Upper Limb Home Rehabilitation System Using a Smartwatch and Machine Learning Model for Chronic Stroke Survivors: Prospective Comparative Study. Chae SH; Kim Y; Lee KS; Park HS JMIR Mhealth Uhealth; 2020 Jul; 8(7):e17216. PubMed ID: 32480361 [TBL] [Abstract][Full Text] [Related]
8. Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction? Anderson AB; Grazal CF; Balazs GC; Potter BK; Dickens JF; Forsberg JA Clin Orthop Relat Res; 2020 Jul; 478(7):0-1618. PubMed ID: 32282466 [TBL] [Abstract][Full Text] [Related]
9. Mining Clinical Notes for Physical Rehabilitation Exercise Information: Natural Language Processing Algorithm Development and Validation Study. Sivarajkumar S; Gao F; Denny P; Aldhahwani B; Visweswaran S; Bove A; Wang Y JMIR Med Inform; 2024 Apr; 12():e52289. PubMed ID: 38568736 [TBL] [Abstract][Full Text] [Related]
10. Predicting recovery following stroke: Deep learning, multimodal data and feature selection using explainable AI. White A; Saranti M; d'Avila Garcez A; Hope TMH; Price CJ; Bowman H Neuroimage Clin; 2024; 43():103638. PubMed ID: 39002223 [TBL] [Abstract][Full Text] [Related]
11. Detecting compensatory movements of stroke survivors using pressure distribution data and machine learning algorithms. Cai S; Li G; Zhang X; Huang S; Zheng H; Ma K; Xie L J Neuroeng Rehabil; 2019 Nov; 16(1):131. PubMed ID: 31684970 [TBL] [Abstract][Full Text] [Related]
12. Motor skill changes and neurophysiologic adaptation to recovery-oriented virtual rehabilitation of hand function in a person with subacute stroke: a case study. Fluet GG; Patel J; Qiu Q; Yarossi M; Massood S; Adamovich SV; Tunik E; Merians AS Disabil Rehabil; 2017 Jul; 39(15):1524-1531. PubMed ID: 27669997 [TBL] [Abstract][Full Text] [Related]
13. Comparison of EEG measurement of upper limb movement in motor imagery training system. Suwannarat A; Pan-Ngum S; Israsena P Biomed Eng Online; 2018 Aug; 17(1):103. PubMed ID: 30071853 [TBL] [Abstract][Full Text] [Related]
14. Clinical machine learning predicting best stroke rehabilitation responders to exoskeletal robotic gait rehabilitation. Park S; Choi J; Kim Y; You JSH NeuroRehabilitation; 2024; 54(4):619-628. PubMed ID: 38943406 [TBL] [Abstract][Full Text] [Related]
15. Converging Robotic Technologies in Targeted Neural Rehabilitation: A Review of Emerging Solutions and Challenges. Nizamis K; Athanasiou A; Almpani S; Dimitrousis C; Astaras A Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33809721 [TBL] [Abstract][Full Text] [Related]
16. Analysis of nailfold capillaroscopy images with artificial intelligence: Data from literature and performance of machine learning and deep learning from images acquired in the SCLEROCAP study. Ozturk L; Laclau C; Boulon C; Mangin M; Braz-Ma E; Constans J; Dari L; Le Hello C Microvasc Res; 2025 Jan; 157():104753. PubMed ID: 39389419 [TBL] [Abstract][Full Text] [Related]
17. Real-Time Detection of Compensatory Patterns in Patients With Stroke to Reduce Compensation During Robotic Rehabilitation Therapy. Cai S; Li G; Su E; Wei X; Huang S; Ma K; Zheng H; Xie L IEEE J Biomed Health Inform; 2020 Sep; 24(9):2630-2638. PubMed ID: 31902785 [TBL] [Abstract][Full Text] [Related]
18. Ensemble machine learning model trained on a new synthesized dataset generalizes well for stress prediction using wearable devices. Vos G; Trinh K; Sarnyai Z; Rahimi Azghadi M J Biomed Inform; 2023 Dec; 148():104556. PubMed ID: 38048895 [TBL] [Abstract][Full Text] [Related]
19. A Novel Machine Learning Approach for Severity Classification of Diabetic Foot Complications Using Thermogram Images. Khandakar A; Chowdhury MEH; Reaz MBI; Ali SHM; Kiranyaz S; Rahman T; Chowdhury MH; Ayari MA; Alfkey R; Bakar AAA; Malik RA; Hasan A Sensors (Basel); 2022 Jun; 22(11):. PubMed ID: 35684870 [TBL] [Abstract][Full Text] [Related]
20. Influence of New Technologies on Post-Stroke Rehabilitation: A Comparison of Armeo Spring to the Kinect System. Adomavičienė A; Daunoravičienė K; Kubilius R; Varžaitytė L; Raistenskis J Medicina (Kaunas); 2019 Apr; 55(4):. PubMed ID: 30970655 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]