These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 39374057)

  • 1. Use of SNOMED CT in Large Language Models: Scoping Review.
    Chang E; Sung S
    JMIR Med Inform; 2024 Oct; 12():e62924. PubMed ID: 39374057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Role of Large Language Models in Transforming Emergency Medicine: Scoping Review.
    Preiksaitis C; Ashenburg N; Bunney G; Chu A; Kabeer R; Riley F; Ribeira R; Rose C
    JMIR Med Inform; 2024 May; 12():e53787. PubMed ID: 38728687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of the Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) for Processing Free Text in Health Care: Systematic Scoping Review.
    Gaudet-Blavignac C; Foufi V; Bjelogrlic M; Lovis C
    J Med Internet Res; 2021 Jan; 23(1):e24594. PubMed ID: 33496673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large Language Models for Mental Health Applications: Systematic Review.
    Guo Z; Lai A; Thygesen JH; Farrington J; Keen T; Li K
    JMIR Ment Health; 2024 Oct; 11():e57400. PubMed ID: 39423368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Taiyi: a bilingual fine-tuned large language model for diverse biomedical tasks.
    Luo L; Ning J; Zhao Y; Wang Z; Ding Z; Chen P; Fu W; Han Q; Xu G; Qiu Y; Pan D; Li J; Li H; Feng W; Tu S; Liu Y; Yang Z; Wang J; Sun Y; Lin H
    J Am Med Inform Assoc; 2024 Sep; 31(9):1865-1874. PubMed ID: 38422367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large language models for biomedicine: foundations, opportunities, challenges, and best practices.
    Sahoo SS; Plasek JM; Xu H; Uzuner Ö; Cohen T; Yetisgen M; Liu H; Meystre S; Wang Y
    J Am Med Inform Assoc; 2024 Sep; 31(9):2114-2124. PubMed ID: 38657567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Empirical Evaluation of Prompting Strategies for Large Language Models in Zero-Shot Clinical Natural Language Processing: Algorithm Development and Validation Study.
    Sivarajkumar S; Kelley M; Samolyk-Mazzanti A; Visweswaran S; Wang Y
    JMIR Med Inform; 2024 Apr; 12():e55318. PubMed ID: 38587879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comprehensive evaluation of large Language models on benchmark biomedical text processing tasks.
    Jahan I; Laskar MTR; Peng C; Huang JX
    Comput Biol Med; 2024 Mar; 171():108189. PubMed ID: 38447502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generative Large Language Models in Electronic Health Records for Patient Care Since 2023: A Systematic Review.
    Du X; Zhou Z; Wang Y; Chuang YW; Yang R; Zhang W; Wang X; Zhang R; Hong P; Bates DW; Zhou L
    medRxiv; 2024 Aug; ():. PubMed ID: 39228726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the role of the UMLS in supporting diagnosis generation proposed by Large Language Models.
    Afshar M; Gao Y; Gupta D; Croxford E; Demner-Fushman D
    J Biomed Inform; 2024 Sep; 157():104707. PubMed ID: 39142598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Health Care Language Models and Their Fine-Tuning for Information Extraction: Scoping Review.
    Nunes M; Bone J; Ferreira JC; Elvas LB
    JMIR Med Inform; 2024 Oct; 12():e60164. PubMed ID: 39432345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Systematic Review of ChatGPT and Other Conversational Large Language Models in Healthcare.
    Wang L; Wan Z; Ni C; Song Q; Li Y; Clayton EW; Malin BA; Yin Z
    medRxiv; 2024 Apr; ():. PubMed ID: 38712148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating large language models for health-related text classification tasks with public social media data.
    Guo Y; Ovadje A; Al-Garadi MA; Sarker A
    J Am Med Inform Assoc; 2024 Oct; 31(10):2181-2189. PubMed ID: 39121174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential of Large Language Models in Health Care: Delphi Study.
    Denecke K; May R; ; Rivera Romero O
    J Med Internet Res; 2024 May; 26():e52399. PubMed ID: 38739445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of readability and structural accuracy in SNOMED CT.
    Abad-Navarro F; Quesada-Martínez M; Duque-Ramos A; Fernández-Breis JT
    BMC Med Inform Decis Mak; 2020 Dec; 20(Suppl 10):284. PubMed ID: 33319711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leveraging Large Language Models for Precision Monitoring of Chemotherapy-Induced Toxicities: A Pilot Study with Expert Comparisons and Future Directions.
    Ruiz Sarrias O; Martínez Del Prado MP; Sala Gonzalez MÁ; Azcuna Sagarduy J; Casado Cuesta P; Figaredo Berjano C; Galve-Calvo E; López de San Vicente Hernández B; López-Santillán M; Nuño Escolástico M; Sánchez Togneri L; Sande Sardina L; Pérez Hoyos MT; Abad Villar MT; Zabalza Zudaire M; Sayar Beristain O
    Cancers (Basel); 2024 Aug; 16(16):. PubMed ID: 39199603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supporting SNOMED CT postcoordination with knowledge graph embeddings.
    Castell-Díaz J; Miñarro-Giménez JA; Martínez-Costa C
    J Biomed Inform; 2023 Mar; 139():104297. PubMed ID: 36736448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SNOMEDtxt: Natural Language Generation from SNOMED Ontology.
    Lyudovyk O; Weng C
    Stud Health Technol Inform; 2019 Aug; 264():1263-1267. PubMed ID: 31438128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large language model-based information extraction from free-text radiology reports: a scoping review protocol.
    Reichenpfader D; Müller H; Denecke K
    BMJ Open; 2023 Dec; 13(12):e076865. PubMed ID: 38070902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Natural Language Processing for Work-Related Stress Detection Among Health Professionals: Protocol for a Scoping Review.
    Bieri JS; Ikae C; Souissi SB; Müller TJ; Schlunegger MC; Golz C
    JMIR Res Protoc; 2024 May; 13():e56267. PubMed ID: 38749026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.