These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 3937493)
1. Inability of Pseudomonas stutzeri denitrification mutants with the phenotype of Pseudomonas aeruginosa to grow in nitrous oxide. Bryan BA; Jeter RM; Carlson CA Appl Environ Microbiol; 1985 Nov; 50(5):1301-3. PubMed ID: 3937493 [TBL] [Abstract][Full Text] [Related]
2. Comparison of denitrification by Pseudomonas stutzeri, Pseudomonas aeruginosa, and Paracoccus denitrificans. Carlson CA; Ingraham JL Appl Environ Microbiol; 1983 Apr; 45(4):1247-53. PubMed ID: 6407395 [TBL] [Abstract][Full Text] [Related]
3. Physical mapping of transposon Tn5 insertions defines a gene cluster functional in nitrous oxide respiration by Pseudomonas stutzeri. Viebrock A; Zumft WG J Bacteriol; 1987 Oct; 169(10):4577-80. PubMed ID: 2820935 [TBL] [Abstract][Full Text] [Related]
4. A NosA-specific bacteriophage can be used to select denitrification-defective mutants of Pseudomonas stutzeri. Clark MA; Tang YJ; Ingraham JL J Gen Microbiol; 1989 Oct; 135(10):2569-75. PubMed ID: 2632664 [TBL] [Abstract][Full Text] [Related]
5. Thermophilic Bacillus sp. that shows the denitrification phenotype of Pseudomonas aeruginosa. Gokce N; Hollocher TC; Bazylinski DA; Jannasch HW Appl Environ Microbiol; 1989 Apr; 55(4):1023-5. PubMed ID: 2499254 [TBL] [Abstract][Full Text] [Related]
6. Isolation and characterization of transposon Tn5-induced mutants of Pseudomonas perfectomarina defective in nitrous oxide respiration. Zumft WG; Döhler K; Körner H J Bacteriol; 1985 Sep; 163(3):918-24. PubMed ID: 2993252 [TBL] [Abstract][Full Text] [Related]
7. The physiological genetics of denitrifying bacteria. Carlson CA Antonie Van Leeuwenhoek; 1982; 48(6):555-67. PubMed ID: 6301370 [TBL] [Abstract][Full Text] [Related]
8. Inability of Pseudomonas stutzeri Denitrification Mutants with the Phenotype of Pseudomonas aeruginosa to Grow in Nitrous Oxide. Appl Environ Microbiol; 1986 Mar; 51(3):671. PubMed ID: 16347030 [TBL] [Abstract][Full Text] [Related]
9. Marker exchange of the structural genes for nitric oxide reductase blocks the denitrification pathway of Pseudomonas stutzeri at nitric oxide. Braun C; Zumft WG J Biol Chem; 1991 Dec; 266(34):22785-8. PubMed ID: 1744072 [TBL] [Abstract][Full Text] [Related]
10. Gas chromatographic assay for in vitro complementation of Pseudomonas aeruginosa mutants deficient in nitrate reduction. Hernandez D; Rowe JJ Appl Environ Microbiol; 1985 Jan; 49(1):24-7. PubMed ID: 3919641 [TBL] [Abstract][Full Text] [Related]
11. Loss of N2O reductase activity as an explanation for poor growth of Pseudomonas aeruginosa on N2O. Snyder SW; Bazylinski DA; Hollocher TC Appl Environ Microbiol; 1987 Sep; 53(9):2045-9. PubMed ID: 3118806 [TBL] [Abstract][Full Text] [Related]
12. Efficient nitrous oxide recovery from incineration leachate by a nosZ-deficient strain of Pseudomonas aeruginosa. Nie H; Liu X; Dang Y; Ji Y; Sun D; Smith JA; Holmes DE Bioresour Technol; 2020 Feb; 297():122371. PubMed ID: 31753601 [TBL] [Abstract][Full Text] [Related]
13. Blockage by acetylene of nitrous oxide reduction in Pseudomonas perfectomarinus. Balderston WL; Sherr B; Payne WJ Appl Environ Microbiol; 1976 Apr; 31(4):504-8. PubMed ID: 1267447 [TBL] [Abstract][Full Text] [Related]
14. Pathway of nitrous oxide consumption in isolated Pseudomonas stutzeri strains under anoxic and oxic conditions. Desloover J; Roobroeck D; Heylen K; Puig S; Boeckx P; Verstraete W; Boon N Environ Microbiol; 2014 Oct; 16(10):3143-52. PubMed ID: 24447520 [TBL] [Abstract][Full Text] [Related]
15. Derived amino acid sequences of the nosZ gene (respiratory N2O reductase) from Alcaligenes eutrophus, Pseudomonas aeruginosa and Pseudomonas stutzeri reveal potential copper-binding residues. Implications for the CuA site of N2O reductase and cytochrome-c oxidase. Zumft WG; Dreusch A; Löchelt S; Cuypers H; Friedrich B; Schneider B Eur J Biochem; 1992 Aug; 208(1):31-40. PubMed ID: 1324835 [TBL] [Abstract][Full Text] [Related]
16. Acetylene inhibition of nitrous oxide reduction by denitrifying bacteria. Yoshinari T; Knowles R Biochem Biophys Res Commun; 1976 Apr; 69(3):705-10. PubMed ID: 817722 [No Abstract] [Full Text] [Related]
17. Energy yield of denitrification: an estimate from growth yield in continuous cultures of Pseudomonas denitrificans under nitrate-, nitrite- and oxide-limited conditions. Koike I; Hattori A J Gen Microbiol; 1975 May; 88(1):11-9. PubMed ID: 1151328 [TBL] [Abstract][Full Text] [Related]
18. Separate nitrite, nitric oxide, and nitrous oxide reducing fractions from Pseudomonas perfectomarinus. Payne WJ; Riley PS; Cox CD J Bacteriol; 1971 May; 106(2):356-61. PubMed ID: 4324803 [TBL] [Abstract][Full Text] [Related]
19. Anaerobic control of denitrification in Pseudomonas stutzeri escapes mutagenesis of an fnr-like gene. Cuypers H; Zumft WG J Bacteriol; 1993 Nov; 175(22):7236-46. PubMed ID: 8226670 [TBL] [Abstract][Full Text] [Related]
20. Studies on the differential inhibition by azide on the nitrite/nitrous oxide level of denitrification. Sidransky E; Walter B; Hollocher TC Appl Environ Microbiol; 1978 Feb; 35(2):247-50. PubMed ID: 416748 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]